

ICECAA

Proceedings

of the

3rd International Conference on Edge Computing and Applications ICECAA 2025

Organised by

Gnanamani College of Technology
Namakkal, Tamilnadu, India

3-4, December 2025

Table of Contents

- 1 Deep Learning Pathways for Smart Pest Detection in Crop Fields: A Comprehensive Review
Bhavini J Samajpati, Priyesh Gandhi, Sheshang Degadwala
- 2 SmarTTrack: A Mobile Crowdsensing System for Vehicle Multi-Tracking in Smart Cities
Cícero Matias F Do Nascimento Neto, Thales Gustavo Mendes Nunes, Luciano Reis Coutinho, Francisco Jos'e Da Silva E Silva
- 3 FusionNet: Multi-Contrast MRI Fusion and Deep Learning for Automated Segmentation and Analysis of Wrist Ganglion Cysts
Pallikonda Rajasekaran Murugan, Reddannagari Gunasekar Reddy, Shaik Pulan Basha, Jagatap Sandeep Kumar, Sivashankari Thangaperumal, Aseel Smerat
- 4 Lightweight Authentication Methods using Blockchain for Secure Interoperable Electronic Assembly Line IoT Devices
R Premkumar, Sudalaimuthu T
- 5 Smart Wheelchair Monitoring: Location and Occupancy Detection for Improved Hospital Access
Kottaimalai Ramaraj, Pandiselvan M, Shahid Ismail S, Annamalai V M
- 6 Machine Learning and Deep Learning for Phishing Detection: A Survey
Ashwin Sasi, Nandana Krishna M K, Harishankar Binu Nair, Remya S

7 **Evaluating Classical Machine Learning Models for Predicting Vulnerabilities in IoT Network Datasets**
Poorana Senthilkumar S, Rajesh Kanna R, N Thangarasu, P S Vijayalakshmi, A Muthusamy, G D Praveenkumar

8 **DENSENET AND EFFICIENTNET-B HYBRID DEEP TRANSFER LEARNING FOR GROWTH IN SKIN DISEASE PREDICTION**
A Kalaivani, A Shanmugapriya, A Sangeetha Devi, P Jayapriya

9 **Intelligent Battery Management System with Digital Twin Builder**
R Santhoshkumar, M S Saisujeesh, T Vijayakumar, S Vinesh

10 **LOW-POWER CMOS PHASE-LOCKED LOOP DESIGN AND PERFORMANCE EVALUATION IN GPDK 90nm TECHNOLOGY**
Vinay K Kolur, Jayalaxmi Gonal, Rashmi Nimbaragi

11 **Temporal and Regulatory Reasoning in Parking Sign Interpretation using Machine Learning and LoRA-Tuned LLaMA 3**
Himanshu Dwivedi

12 **Decentralized IoT Frameworks: Blockchain-Enabled Trust in Smart Ecosystems**
S Venkatasubramaian, V Mohan, A Subasri, S HariPrasath, A Thenmozi, M AurnaDevi Thirumanraj

13 **Olfactory Diagnostics: Breath-Based Detection of Lung and Liver Cancer Using Biological and Artificial Noses**
Krithika D, Pushmitha P, J Priya, J Vijayraj, B M Arun Esai, Sandhya Sasidharan

14 **Adaptive Object Prioritization via Dual-Stack BiGRU for Enhanced Scene Interpretation in Visual Impairment Systems**
Komal Mahadeo Masal, Shripad Bhatlawande, Sachin Dattatraya Shingade

DENSENET AND EFFICIENTNET-B HYBRID DEEP TRANSFER LEARNING FOR GROWTH IN SKIN DISEASE PREDICTION

Dr. A. Kalaivani¹, A. Shanmugapriya², Dr. A. Sangeetha Devi³, Dr. P. Jayapriya⁴

¹ Assistant Professor, Department of Computer Science, Nallamuthu Gounder Mahalingam College, Pollachi, Coimbatore, Tamil Nadu, India

² Assistant Professor, Department of ECE, Sri Eshwar College of Engineering, Coimbatore, Tamil Nadu, India

³ Professor, Department of Mathematics, Nehru Institute of Engineering and Technology Coimbatore, Tamil Nadu, India

⁴ Department of Computer Science, Nallamuthu Gounder Mahalingam College, Pollachi, Coimbatore, Tamil Nadu, India

kalaivanimathsca@gmail.com
shanmugapriya301991@gmail.com
sangeethadevi.a@gmail.com
topriyadamu@gmail.com

Abstract. Background: Skin disorders are among the most prevalent medical problems in the world, and in order to prevent consequences, a prompt and precise diagnosis is typically required. However, some of the main obstacles to automated classification techniques are the lack of annotated clinical images, overlapping symptoms, and the visual similarity of lesions.

Objective: By combining the relative benefits of DenseNet121 and EfficientNetB0, the suggested study suggests a Dual-Backbone Transfer Learning Network (DBTLN) designed to improve the diagnostic performance of skin disease classification.

Methods: The DBTLN structure makes use of EfficientNet's depth scaling for computational efficiency and DenseNet's dense connectivity of features for preserving fine-grained lesion features. 19,171 dermoscopic photos of 19 distinct skin diseases were used to train and test the model. Presentation was assessed using exactness, accuracy, memory, and F1-score, and comparisons were made with the traditional CNN models, VGG19, MobileNetV2, AlexNet, DenseNet121, and EfficientNetB0.

Findings: The DBTLN outperformed all baselines with validation accuracy of 97.57%, correctness of 0.95, remembrance of 0.96, and F1-score of 0.95. These results demonstrate enhanced generalization across a broad range of skin lesion types, particularly under constrained and irregular clinical settings. Thus, this model substantially enhances skin disease prediction by leveraging deep feature fusion and adaptive learning mechanisms. It also achieves reliability by minimizing prediction error and enhancing generalizability.

In conclusion, the suggested dual-backbone architecture offers a robust,