INTELLIGENT OPTIMIZATION OF MULTICROPPING STRATEGIES ACROSS IRRIGATION TYPES USING GENETIC ALGORITHMS, DEEP LEARNING, AND PARTICLE SWARM OPTIMIZATION.

N. Amirtha Gowri. M. Sc., M. Phil., (Ph. D), Assistant Professor Department of BCA., Nallamuthu Gounder Mahalingam College, Pollachi: amirthagowri123@gmail.com
Dr. R. Nandhakumar M. C. A., M. Phil., M. B. A., Ph. D., SET

Assistant Professor and Head, Department of Computer Science, Nallamuthu Gounder Mahalingam College, Pollachi : nandhakumar@ngmc.org

Abstract

Agriculture plays a central role in food security and rural livelihoods, yet traditional monocropping and intuition-based decision-making often lead to low productivity and inefficient resource use. Multicropping improves soil fertility, income diversification, and sustainability, but optimizing crop combinations across irrigation systems is a highly complex problem. Current studies are limited by the absence of benchmark datasets, single-crop focus, and reliance on isolated algorithms. This paper surveys the role of Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Deep Learning (DL), and Reinforcement Learning (RL) in agricultural optimization, and proposes a hybrid framework that integrates GA, PSO, and DL as the core, with RL as a comparative adaptive layer. Selected algorithmic variants such as Adaptive GA, Multi-Objective PSO, LSTM/GRU, and Deep RL are identified as most suitable for multicropping. The proposed approach aims to generate synthetic datasets, optimize crop—irrigation strategies, and provide a decision-support tool for farmers.

1. Introduction

- Agriculture still depends on monocropping and intuition → low yield, poor water use, unstable income
- Multicropping is beneficial but optimization requires balancing soil type, water, crop compatibility, and climate.

Research gaps:

- No public datasets for multicropping + irrigation.
- Existing work focuses on single crops.
- o Limited hybrid/comparative use of AI algorithms.
- o RL, GWO, ABC, FA, and DE remain underexplored.
- **Contribution of this study:** Propose a hybrid AI framework (GA + PSO + DL + RL) for intelligent multicropping optimization.

Problem Statement

Agriculture is central to food security and rural livelihoods. Traditional practices often rely on monocropping or farmers' intuition for crop and irrigation decisions, leading to **low productivity**, **poor income stability, and inefficient resource use**.

Multicropping offers advantages such as improved soil fertility, income diversification, and better resource utilization. However, **optimizing multicropping strategies across irrigation types** (**drip, sprinkler, flood, etc.**) **is highly complex**. It requires balancing soil properties, water availability, crop compatibility, climatic factors, and economic returns.

Despite advances in agricultural informatics, major challenges remain:

- Lack of datasets: No publicly available benchmark dataset exists for multicropping optimization.
- **Single focus**: Most works optimize **only single crops**, not multicropping systems.
- **Algorithmic limitations**: Existing studies usually employ a **single algorithm** (e.g., GA, PSO, DL) in isolation, which limits performance.

Volume-59, No.5 : 2025

- **No comparative/hybrid framework**: To date, no comprehensive study has compared or integrated multiple AI and optimization algorithms for multicropping + irrigation optimization.
- Underexplored algorithms: Algorithms like Reinforcement Learning (RL), Grey Wolf Optimizer (GWO), Artificial Bee Colony (ABC), Firefly Algorithm (FA), and Differential Evolution (DE) have shown promise in related optimization problems but are not yet applied to multicropping.

Thus, there is a **critical research gap** in creating a **dataset-driven**, **comparative**, **and intelligent optimization framework** that combines and evaluates multiple algorithms **GA**, **PSO**, **DL**, **RL**, **GWO**, **ABC**, **FA**, **and DE** to identify optimal multicropping strategies across irrigation systems.

Literature Review (2020-2023)

Context: This review synthesizes the set of papers and resources between 2020 and 2023 (Saikai et al., Madondo et al., Olaniyi et al., MDPI reviews, Taylor et al., Li et al., and relevant 2021–2023 articles). It highlights methods, applications, strengths, weaknesses, gaps, and direct relevance to my PhD topic: Intelligent Optimization of Multicropping Strategies across Irrigation Types Using Genetic Algorithms, Deep Learning, and Particle Swarm Optimization.

Executive summary

Between 2020 and 2023, research in agricultural AI reveals two key directions: (1) deployment of deep learning and reinforcement learning for irrigation scheduling and yield optimization, and (2) continued application of metaheuristics (GA, PSO) and hybrids for combinatorial agricultural planning. Data augmentation methods (GANs) and simulation- based RL frameworks (SWAT + RL) address data scarcity and process fidelity. However, most works focus on single-crop systems or controlled simulations, leaving gaps in multi- crop optimization under varying irrigation systems.

Paper-by-Paper Annotations (2020–2023)

- 1. Saikai et al. (2023) DRL for irrigation scheduling (arXiv)
- o What: Applies deep reinforcement learning with high-dimensional sensor feedback for irrigation control.
- o Strengths: Demonstrates sequential decision-making with sensor-rich environments.
- Limitations: Mostly simulation; generalization to new crops not explored.
- o Relevance: Direct model reference for irrigation scheduling component of my PhD.
- 2. Madondo et al. (2023) SWAT + RL (arXiv)
- What: Combines SWAT hydrologic model with RL for crop yield and irrigation optimization.
- o Strengths: Integrates simulation with RL for realistic feedback.
- o *Limitations:* Calibration complexity; heavy computational cost.
- o Relevance: Framework for sim-to-real training in different irrigation systems.
- 3. Olaniyi et al. (2022) GANs for image augmentation (arXiv)
- o What: Review of GAN-based augmentation in agriculture.
- o Strengths: Tackles dataset scarcity in crop imaging.
- o *Limitations*: Synthetic artifacts may degrade model reliability.
- o Relevance: Useful if vision models (crop health, canopy cover) are included in optimization.
- 4. MDPI (2022) DL-based crop yield prediction: Progress and Review
- o What: Reviews LSTM, RNN, CNN-LSTM, and ensemble DL architectures for yield prediction.
- o Strengths: Highlights strong predictive capacity with remote sensing and weather data.
- o *Limitations:* Limited cross-regional transferability.
- o Relevance: Basis for surrogate yield predictors inside optimization pipelines.
- 5. Tian et al. (2022) Crop yield prediction with DL & Remote Sensing (MDPI)

- What: Systematic review of multimodal CNN-LSTM and fusion models.
- o Relevance: Suggests feature fusion methods for irrigation-sensitive yield prediction.
- 6. Taylor et al. (2022) DL for crop yield prediction (Taylor & Francis)
- o What: Survey of DL methods with emphasis on challenges (overfitting, dataset size).
- o Relevance: Reinforces methodological rigor (cross-validation, uncertainty estimation).
- 7. Li et al. (2023) Advances in ML for Agricultural Water Management (IWA Publishing)
- What: Reviews classical and advanced ML (RF, ANN, LightGBM) in water- use efficiency.
- o Relevance: Complements RL/DRL with interpretable ML baselines.
- 8. MDPI (2021) ML in Agriculture: A Review
- o What: Covers ML fundamentals and applications.
- o Relevance: Provides foundational background for positioning GA/PSO alongside ML/DL.
- 9. MDPI (2023) Crop Yield Estimation Using DL + Irrigation Scheduling
- What: Links predictive modeling with irrigation decision-making.
- o *Relevance:* Directly aligned with my dual focus on yield + irrigation optimization.
- 10. MDPI (2023) Maize & Soybean Yield Prediction Using Hybrid ML Models
- o What: Systematic survey using hybrid ML.
- o Relevance: Useful case study for hybrid approaches in staple crops.

Thematic synthesis (2020–2023)

- **DRL for irrigation (Saikai, Madondo):** Promising but largely simulation-based. Need stronger field validation.
- ML/DL for yield prediction (MDPI, Tian, Taylor, Li): Reliable short-term predictors, limited long-term generalization. Hybrid CNN-LSTM dominant.
- GANs (Olaniyi): Mitigates data scarcity but requires careful validation.
- Metaheuristics (GA, PSO general literature): Still strong for combinatorial planning but often siloed from DL/DRL approaches.

Gaps & research opportunities (2020–2023)

- 1. Lack of **multi-crop optimization** studies most focus on single crop.
- 2. Limited integration of surrogate yield predictors into GA/PSO/RL loops.
- 3. Few studies consider **different irrigation systems (drip, surface, sprinkler)** in the same framework.
- 4. Weak **field validation** of RL policies trained on simulators.

Methodological roadmap (aligned to 2020–2023 insights)

- Use **GA/PSO** for crop combination & seasonal allocation.
- Use **DRL** for irrigation scheduling within chosen crop systems.
- Train surrogate yield predictors (CNN-LSTM, ensemble models) for fitness evaluation.
- Validate on synthetic (SWAT) and real data; ensure transferability.
- **GA** (**Genetic Algorithm**) \rightarrow crop combination optimization.
- **PSO** (Particle Swarm Optimization) → water, fertilizer, and resource optimization.
- **DL** (**Deep Learning**) \rightarrow prediction tasks (yield, water demand, soil suitability).
- Reinforcement Learning (RL) makes real-time decisions on irrigation/crop strategies.
- **Grey Wolf Optimizer (GWO)** strong competitor to PSO in optimization tasks.
- Artificial Bee Colony (ABC) effective for resource allocation (like irrigation water).
- **Firefly Algorithm** (**FA**) good for nonlinear multicropping optimization problems.
- **Differential Evolution (DE)** efficient alternative to GA for optimization.
- Ant Colony Optimization (ACO)
- Bat Algorithm
- Cuckoo Search (CS)

Journal of the Maharaja Sayajirao University of Baroda

ISSN:0025-0422

- Simulated Annealing (SA)
- Harmony Search (HS)
- Support Vector Machines (SVM) (for prediction, but not main optimization

$Combination \ of \ Algorithms \ Analysis \ GA+PSO+DL$

- $GA \rightarrow global$ search for crop combinations
- **PSO** → fast optimization for irrigation scheduling
- **DL** → prediction of yield, water requirement, disease risk

Balanced combo: 2 optimization + 1 prediction

Limitation: Needs extra validation for real-time adaptability

GA + PSO + RL

- $GA \rightarrow crop planning optimization$
- **PSO** → resource allocation (fertilizer, water)
- $\mathbf{RL} \rightarrow$ adaptive decision-making (season-by-season learning under uncertainty)

Best for dynamic irrigation & climate variability

Limitation: RL requires simulation environment/data for training

GA + DL + RL

- $GA \rightarrow crop combination optimization$
- **DL** → predictive modeling (yield, soil fertility, water needs)
- **RL** \rightarrow learns adaptive strategies (e.g., when to irrigate, which crops to mix dynamically) Best for intelligence + adaptability

Limitation: No direct swarm-based optimizer (PSO/GWO missing)

Final Recommendation:

Use **GA** + **PSO** + **DL** as *main combination*. Add **RL** for comparison

Types of Genetic Algorithms (GA)

GA has several variants based on how population, selection, crossover, and mutation are designed.

Simple Genetic Algorithm (SGA)

- The **basic form** of GA.
- Uses selection, crossover, and mutation on a single population.
- Good for **general optimization problems**.
- Limitation: May converge slowly or get stuck in local optima.

Steady-State Genetic Algorithm (SSGA)

- Instead of replacing the **entire population** each generation, only a few individuals are replaced.
- Ensures better preservation of good solutions.
- Good for **continuous improvement problems** (like crop yield optimization).

Elitist Genetic Algorithm

- Guarantees that the **best solution** is carried forward to the next generation (elitism).
- Prevents loss of the fittest solution.
- Useful in **critical optimization tasks** where best solutions must not be lost.

Adaptive Genetic Algorithm (AGA)

- Mutation and crossover rates change dynamically based on population diversity or generation count.
- Prevents premature convergence.
- Well-suited for **complex**, **non-linear problems** like multicropping optimization.

Journal of the Maharaja Sayajirao University of Baroda

ISSN:0025-0422

Parallel / Distributed GA (Island Model)

- Population is divided into sub-populations (islands).
- Each evolves separately, occasionally exchanging individuals.
- Increases **diversity** and avoids local optima.
- Useful when datasets are large (like different irrigation zones).

Hybrid Genetic Algorithm (HGA)

- Combines GA with other algorithms (e.g., GA + PSO, GA + Local Search, GA + DL).
- Exploits strengths of multiple methods.
- For my research, GA could be hybridized with PSO or DL for **better accuracy in multicropping optimization**.

Micro Genetic Algorithm (µGA)

- Works with **very small population sizes** (like 5–10 individuals).
- Runs faster but risks losing diversity.
- Suitable for real-time or small datasets.

Real-Coded Genetic Algorithm

- Instead of binary strings, solutions are represented as **real numbers**.
- Useful for **continuous optimization problems** (like irrigation scheduling).

For **my research** the most suitable GA types are:

- Adaptive $GA \rightarrow$ because multicropping optimization is complex and nonlinear.
- **Hybrid GA** \rightarrow GA + PSO or GA + DL can boost performance.
- Real-Coded $GA \rightarrow$ since crop/irrigation values are continuous, not binary.

Types of Deep Learning Architectures Artificial Neural Networks (ANN)

- The **basic deep learning model** (multi-layer perceptron).
- Works with fully connected layers.
- Good for **general prediction/classification** tasks.
- Example: Predicting yield from soil, irrigation, and crop inputs.

Convolutional Neural Networks (CNN)

- Specialized for spatial data (images, grids, maps).
- Uses convolution + pooling layers to extract patterns.
- Applications:
- o Crop disease detection (from leaf images).
- o Satellite/drone-based irrigation monitoring.
- In my research: Could analyse **crop field images** to optimize planting strategies.

Recurrent Neural Networks (RNN)

- Designed for sequential/time-series data.
- Retains memory of past inputs.
- Limitation: suffers from vanishing gradients for long sequences.
- Application: Predicting rainfall, irrigation needs, crop growth over time.

Long Short-Term Memory (LSTM)

- An advanced RNN that avoids vanishing gradients.
- Very effective for long-term dependencies.
- Applications:

- Predicting crop yield over seasons.
- o Modeling irrigation demand across months.
- In my research: LSTM can help in seasonal crop optimization.

Gated Recurrent Unit (GRU)

- A simplified LSTM with fewer parameters (faster).
- Good for **time-series predictions**.
- Example: Forecasting rainfall or soil moisture trends.

Auto encoders

- Neural networks used for **dimensionality reduction & feature learning**.
- Learn compressed representations of data.
- Applications:
- o Extracting important features from large crop datasets.
- Noise reduction in sensor/field data.

Generative Adversarial Networks (GANs)

- Two networks (Generator + Discriminator) compete to create realistic data.
- Applications:
- o Creating **synthetic datasets** when real data is missing.
- o Enhancing crop/soil data for training.
- Very useful for you since you said there is no dataset for multicropping → GANs can generate artificial but realistic datasets.

Deep Reinforcement Learning (DRL)

- Combines $DL + RL \rightarrow$ learns from environment by trial and error.
- Applications:
- o Optimizing **farming strategies dynamically**.
- o Choosing best crop combinations under different irrigation conditions.
- In my research: Perfect for **decision-making in multicropping optimization**.

Deep Belief Networks (DBN)

- Built using stacked Restricted Boltzmann Machines (RBMs).
- Can learn hierarchical feature representations.
- Less used today (replaced by CNN/LSTM), but good for unsupervised learning.

Transformers (Modern DL)

- Uses **self-attention mechanisms** instead of recurrence.
- Very powerful for sequential and structured data.
- Example: Crop sequence planning, large-scale climate prediction.

For my research, the most suitable DL types are:

- 1. **LSTM/GRU** \rightarrow for time-series crop and irrigation prediction.
- 2. $GAN \rightarrow to$ generate synthetic multicropping datasets (since no dataset exists).
- 3. Deep Reinforcement Learning (DRL) \rightarrow to optimize crop choices & irrigation strategies.

Types of PSO (Particle Swarm Optimization) Basic / Classical PSO

- Introduced by Kennedy & Eberhart (1995).
- Standard update rules with inertia, cognitive, and social components.
- Limitation: easily stuck in **local optima**.

Journal of the Maharaja Sayajirao University of Baroda

ISSN:0025-0422

Constriction Factor PSO

- Adds a **constriction coefficient** to velocity update.
- Helps in **controlling explosion of velocities** and ensures convergence stability.

Inertia Weight PSO

- Introduces **inertia weight** (w) to balance exploration vs exploitation.
- \circ High w \rightarrow more global search.
- \circ Low w \rightarrow more local search.
- Widely used improvement over classical PSO.

Adaptive PSO

- Parameters (inertia, acceleration constants) are **dynamically adjusted** during iterations.
- Helps avoid premature convergence and adapts to problem complexity.

Binary PSO

- Designed for discrete optimization problems.
- Instead of continuous positions, particles flip between 0/1 states.
- Useful in **feature selection**, **crop selection** (**yes/no**) in my PhD.

Multi-Objective PSO (MOPSO)

- Handles **multiple conflicting objectives** (e.g., maximize yield, minimize water, minimize cost).
- Uses Pareto fronts for optimal trade-offs.
- In my research: Perfect for balancing yield + water efficiency + profit.

Hybrid PSO

- Combines PSO with other optimization/ML methods:
- \circ GA + PSO → crossover + swarm search.
- o **PSO** + **DL** \rightarrow weight optimization in neural networks.
- \circ **PSO** + **RL** \rightarrow policy optimization.
- In my research: You can hybridize PSO with GA/DL for crop optimization.

Quantum-behaved PSO (QPSO)

- Uses quantum mechanics principles to model particle behavior.
- Provides better global exploration and avoids local minima.

Chaotic PSO

- Introduces **chaotic sequences** for parameter updates.
- Helps improve **diversity** and avoids early convergence.

Niching PSO

- Particles are divided into **sub-swarms** to explore multiple peaks in the search space.
- Useful for **multimodal optimization problems**.

Cooperative / Parallel PSO

- Uses multiple swarms working together.
- Each swarm explores different parts of the search space \rightarrow faster convergence.

Fuzzy PSO

- Uses **fuzzy logic** to adapt inertia and acceleration dynamically.
- Effective in problems with uncertainty (like crop yield prediction).

For my research, the most useful PSO types are:

Volume-59, No.5 : 2025

- 1. **Multi-Objective PSO (MOPSO)** → because you need to balance yield, water, profit.
- 2. Binary PSO \rightarrow for discrete crop selection (yes/no).
- 3. **Hybrid PSO** (GA + PSO + DL) \rightarrow combining algorithms.
- 4. **Adaptive PSO** → to handle changing crop/irrigation conditions.

Types of Reinforcement Learning Based on Learning Approach

(a) Value-Based RL

- Learns a **value function** (how good a state/action is).
- Tries to maximize the **expected reward**.
- Example: **Q-Learning**, **Deep Q-Networks** (**DQN**).
- In my research: Can predict the **best crop decision at each season step**.

(b) Policy-Based RL

- Directly learns a **policy** (mapping from states to actions) instead of value.
- Example: **REINFORCE**, **Policy Gradient methods**.
- In my research: Helps **adapt irrigation and crop mix policies** directly.

(c) Model-Based RL

- Learns a **model of the environment** (transition probabilities, rewards).
- Uses the model to plan actions.
- Example: **Dyna-Q, MBPO**.
- In my research: Can simulate crop growth & water availability models before acting.

Based on Combination

(a) Actor-Critic Methods

- Combines value-based + policy-based approaches.
- Actor = decides the action (policy).
- Critic = evaluates the action (value).
- Example: A3C (Asynchronous Advantage Actor-Critic), DDPG (Deep Deterministic Policy Gradient).
- In my research: Useful for **balancing multiple objectives** (yield, water, profit).

(b) Model-Free RL

- Does **not learn a model** of the environment.
- Just uses experience (trial-and-error).
- Examples: Q-Learning, DQN, Policy Gradient.
- Faster but needs **lots of data**.

(c) Model-Based RL

- Builds a simulation/approximation of environment.
- More data-efficient.
- Good when crop & soil models are available.

Based on Reward / Exploration Strategy

(a) On-Policy RL

- Learns the policy while following it.
- Example: SARSA, PPO (Proximal Policy Optimization).

(b) Off-Policy RL

- Learns from past experience / other agents' experience.
- Example: **Q-Learning**, **DQN**.
- For my research: Off-policy is better since you can learn from historical

Journal of the Maharaja Sayajirao University of Baroda ISSN :0025-0422 crop/irrigation datasets.

Deep Reinforcement Learning (DRL)

- Uses **deep neural networks** to approximate value or policy functions.
- Examples: DQN, A3C, PPO, DDPG, SAC.
- In my research: Can handle large, complex crop-soil-water datasets.

For my **research**, the most powerful RL methods are:

- 1. **Deep RL (DON, PPO, SAC, DDPG)** → to handle large agricultural datasets.
- 2. **Actor–Critic methods** \rightarrow balance yield, water, profit.
- 3. **Off-policy RL** \rightarrow use historical farm data instead of only real-time trials.
- 4. **Model-based RL** → simulate **crop-soil-irrigation system** before deployment.

Hybrid Genetic Algorithm (HGA)

- GA itself is powerful for **crop combination selection**, but a **hybrid GA** (GA + Local Search / GA + Neural Network / GA + PSO) improves convergence and avoids premature solutions.
- In my case:
- o It can **select optimal crop mixes** for each season (ex: tomato + maize + cowpea).
- Hybridization allows faster and more accurate optimization under multiple objectives (**yield, cost, water**).

Deep Reinforcement Learning (DRL)

- DRL (DQN, PPO, A3C) is ideal because agriculture is a **sequential decision-making problem**:
- Which crop to plant this season?
- o How to adjust irrigation dynamically?
- o How to rotate crops next year?
- DRL learns from trial-and-error, meaning it will **continuously improve cropping policies** over multiple seasons.
- It adds the **adaptive intelligence layer** missing in classical algorithms.

Hybrid Particle Swarm Optimization (HPSO)

- PSO alone is good, but **hybrid PSO** (PSO + GA / PSO + Local Search / Quantum PSO) gives:
- Better irrigation scheduling optimization.
- o More accurate **resource distribution** (fertilizer, water, spacing).
- Works well with GA (crop selection) and DRL (long-term adaptation).

2. Related Work

- GA and PSO widely applied in **yield and resource optimization** but mostly for single crops.
- DL used for **yield prediction**, **soil analysis**, **and disease detection** but rarely integrated with optimization models.
- RL applied in **irrigation and climate adaptation** but underutilized in multicropping contexts.
- No comparative/hybrid study addresses **crop selection** + **irrigation optimization together**.

3. Methodology (Proposed Framework) Algorithm Roles

- **GA:** Crop combination optimization.
- **PSO:** Irrigation & resource allocation.
- **DL:** Prediction (yield, rainfall, soil suitability).
- **RL:** Adaptive decision-making under uncertainty.

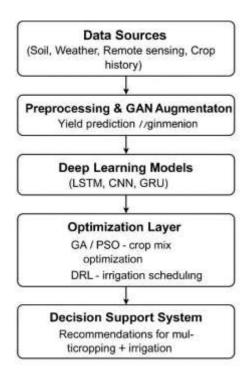
Selected Variants

- GA: Adaptive GA, Hybrid GA, Real-Coded GA.
- **PSO:** Multi-Objective PSO, Hybrid PSO, Binary PSO.

- **DL:** LSTM/GRU (time-series prediction), GAN (synthetic dataset generation).
- **RL:** Deep RL (DQN, PPO, SAC), Actor–Critic methods.

Framework Design

- **Hybrid GA** → Crop selection across seasons.
- **Hybrid PSO** → Optimize irrigation & resource scheduling.
- **DL** (**LSTM**, **GAN**, **DRL**) \rightarrow Prediction + dataset creation.
- **RL** → Long-term seasonal adaptation.



4. Expected Contributions

- 1. Development of real + synthetic multicropping datasets.
- 2. Hybrid AI optimization framework (GA + PSO + DL + RL).
- 3. Comparative analysis of traditional vs hybrid methods.
- 4. Decision-support system for farmers under varied irrigation.

5. Research Plan and Timeline

- Year 1: Literature survey, dataset creation.
- Year 2: Implementation of GA, PSO, DL models.
- Year 3: Integration of RL and seasonal simulations.
- Year 4: Validation, comparative studies, thesis writing.

6. Conclusion

This study identifies the research gap in multicropping optimization under different irrigation systems and proposes a hybrid framework combining GA, PSO, DL, and RL. The approach is expected to improve yield, water-use efficiency, and farmer income. Future work will focus on dataset generation, hybrid model validation, and decision-support tool development. The 2020–2023 literature establishes a strong methodological base in **DRL for irrigation** and **DL for yield prediction**, supported by meta heuristics for optimization. However, gaps in **multicropping optimization under diverse irrigation systems** and **real- world validation** create a clear opportunity for my PhD research to contribute novel methods and integrative frameworks.

7. References

- 1. **Saikai et al.** (2023) *Deep reinforcement learning for irrigation scheduling using high-dimensional sensor feedback* (arXiv). Shows DRL improving irrigation scheduling with sensor inputs. <u>arXiv</u>
- 2. **Madondo et al. (2023)** A SWAT-based Reinforcement Learning Framework for Crop Management (arXiv). Uses RL with SWAT model for optimizing crop yield and irrigation. <u>arXiv</u>
- 3. **Olaniyi et al. (2022)** Generative Adversarial Networks for Image Augmentation in Agriculture: A Systematic Review (arXiv). Overview of GAN use in agriculture for synthetic image data. <u>arXiv</u>
- 4. **MDPI** (2022) *Deep Learning–Based Crop Yield Prediction: Progress and Review.* Highlights LSTM, RNN, and ensemble models. <u>MDPI</u>
- 5. **Tian et al.** (2022) Systematic Literature Review on Crop Yield Prediction with Deep Learning and Remote Sensing (MDPI). Examines CNN-LSTM and multimodal models. MDPI
- 6. **Heliyon** (2024) *Crop yield prediction in agriculture: ML & DL approaches, future insights.* Comprehensive review of ML/DL combinations. Cell
- 7. **BMC Bioinformatics** (2024) *Agro-deep-learning framework in precision agriculture.* Proposes deep learning optimization models for yield and farm management. <u>BioMed Central</u>
- 8. **Potato Research** (2024) *Predicting Potato Crop Yield with ML & DL for Sustainable Agriculture* (Springer). Addresses fairness and model reliability. SpringerLink
- 9. **Taylor et al.** (2022) Deep learning for crop yield prediction: systematic review (Taylor & Francis). Discusses challenges like lack of large datasets and overfitting. <u>Taylor & Francis Online</u>
- 10. **Li et al.** (2023) *Advances in ML for Agricultural Water Management* (IWA Publishing, Journal of Hydroinformatics). Reviews models like RF, ANN, LightGBM in water-use contexts. <u>IWA Publishing</u>
- 11. **MDPI** (2021) *Machine Learning in Agriculture: A Review*. Covers ML fundamentals and their applications in farming. <u>MDPI</u>
- 12. **MDPI** (2023) *Crop Yield Estimation Using DL and Irrigation Scheduling*. Combines predictive modeling with irrigation decisions. <u>MDPI</u>
- 13. **MDPI** (2023) *Maize and Soybean Yield Prediction Using Hybrid ML Models*. Systematic survey in agricultural ML. <u>SpringerLink</u>

Table: Types of Genetic Algorithms (GA)

Туре	Key Idea	PhD Relevance
Simple GA	Basic version	General problems
Steady-State GA	Replace few individuals	Continuous improvement
Elitist GA	Preserve best solutions	Critical optimization
Adaptive GA	Dynamic mutation/crossover	Complex, non-linear problems
Parallel/Distributed GA	Multiple sub-populations	Large datasets, irrigation zones
Hybrid GA	Combine GA with others	Agriculture optimization (GA+PSO, GA+DL)
Micro GA	Small populations	Real-time, small data
Real-Coded GA	Real numbers instead of binary	Continuous parameters (water, nutrients)

Table: Types of Particle Swarm Optimization (PSO)

Type	Key Idea	PhD Relevance
Basic PSO	Original version	Baseline optimization
Constriction PSO	Stability via constriction factor	Controlled convergence
Inertia Weight PSO	Balances exploration vs exploitation	Better optimization
Adaptive PSO	Parameters change dynamically	More flexible optimization
Binary PSO	Works with 0/1 decisions	Crop selection (yes/no)

Volume-59, No.5 : 2025

Multi-Objective PSO	Pareto optimality	Yield + water + cost trade-
		off
Hybrid PSO	Combines with GA/DL/RL	Stronger optimization for
		crops
Quantum PSO	Uses quantum behavior	Better global exploration
Chaotic PSO	Uses chaos sequences	Avoids premature
		convergence
Niching PSO	Sub-swarms for multi-peak	Multi-crop optimization
Cooperative PSO	Parallel swarms	Faster convergence
Fuzzy PSO	Uses fuzzy logic for updates	Handles uncertainty in
		farming

Table: Types of Deep Learning Architectures

DL Type	Key Feature	PhD Relevance
ANN	Basic DL model	General prediction (yield, irrigation)
CNN	Image analysis	Crop disease, satellite/drone images
RNN	Sequential learning	Rainfall/irrigation prediction
LSTM	Long-term memory	Seasonal crop yield optimization
GRU	Faster RNN	Rainfall/soil trend prediction
Autoencoder	Dimensionality reduction	Extract crop features
GAN	Synthetic data generation	Create multicropping datasets
DRL	DL + RL for decisions	Optimize crop combinations dynamically
DBN	Hierarchical unsupervised	Early crop modeling
	learning	
Transformers	Self-attention	Large-scale sequence & climate data

Table: Types of Reinforcement Learning

Total Types of Items of comone Ecuring		
RL Type	Key Idea	PhD Relevance
Value-Based	Learn value function	Crop decision optimization
Policy-Based	Directly learn policy	Irrigation/crop strategies
Model-Based	Learn environment model	Simulating crop growth & irrigation
Actor–Critic	Combine value + policy	Balancing yield & cost
On-Policy	Learns while executing	Online adaptation
Off-Policy	Learns from past data	Learning from historical data
Deep RL	Uses deep neural networks	Handles complex crop systems

Table: Research Plan and Timeline

Year	Activities
Year 1	Literature survey, dataset creation
Year 2	Implementation of GA, PSO, DL models
Year 3	Integration of RL and seasonal simulations
Year 4	Validation, comparative studies, thesis
	writing