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Abstract 

Agriculture plays a central role in food security and rural livelihoods, yet traditional 

monocropping and intuition-based decision-making often lead to low productivity and inefficient 

resource use. Multicropping improves soil fertility, income diversification, and sustainability, but 

optimizing crop combinations across irrigation systems is a highly complex problem. Current studies 

are limited by the absence of benchmark datasets, single-crop focus, and reliance on isolated 

algorithms. This paper surveys the role of Genetic Algorithms (GA), Particle Swarm Optimization 

(PSO), Deep Learning (DL), and Reinforcement Learning (RL) in agricultural optimization, and 

proposes a hybrid framework that integrates GA, PSO, and DL as the core, with RL as a comparative 

adaptive layer. Selected algorithmic variants such as Adaptive GA, Multi-Objective PSO, 

LSTM/GRU, and Deep RL are identified as most suitable for multicropping. The proposed approach 

aims to generate synthetic datasets, optimize crop–irrigation strategies, and provide a decision-

support tool for farmers. 

 

1. Introduction 

• Agriculture still depends on monocropping and intuition → low yield, poor water use, unstable 

income. 

• Multicropping is beneficial but optimization requires balancing soil type, water, crop compatibility, 

and climate. 

 

• Research gaps: 

o No public datasets for multicropping + irrigation. 

o Existing work focuses on single crops. 

o Limited hybrid/comparative use of AI algorithms. 

o RL, GWO, ABC, FA, and DE remain underexplored. 

• Contribution of this study: Propose a hybrid AI framework (GA + PSO + DL + RL) for intelligent 

multicropping optimization. 

 

Problem Statement 

Agriculture is central to food security and rural livelihoods. Traditional practices often rely on 

monocropping or farmers’ intuition for crop and irrigation decisions, leading to low productivity, 

poor income stability, and inefficient resource use. 

Multicropping offers advantages such as improved soil fertility, income diversification, and 

better resource utilization. However, optimizing multicropping strategies across irrigation types 

(drip, sprinkler, flood, etc.) is highly complex. It requires balancing soil properties, water 

availability, crop compatibility, climatic factors, and economic returns. 

 

Despite advances in agricultural informatics, major challenges remain: 

• Lack of datasets: No publicly available benchmark dataset exists for multicropping optimization. 

• Single focus: Most works optimize only single crops, not multicropping systems. 

• Algorithmic limitations: Existing studies usually employ a single algorithm (e.g., GA, PSO, DL) 

in isolation, which limits performance. 
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• No comparative/hybrid framework: To date, no comprehensive study has compared or integrated 

multiple AI and optimization algorithms for multicropping + irrigation optimization. 

• Underexplored algorithms: Algorithms like Reinforcement Learning (RL), Grey Wolf 

Optimizer (GWO), Artificial Bee Colony (ABC), Firefly Algorithm (FA), and Differential 

Evolution (DE) have shown promise in related optimization problems but are not yet applied to 

multicropping. 

 

Thus, there is a critical research gap in creating a dataset-driven, comparative, and intelligent 

optimization framework that combines and evaluates multiple algorithms GA, PSO, DL, RL, 

GWO, ABC, FA, and DE to identify optimal multicropping strategies across irrigation systems. 

 

Literature Review (2020-2023) 

Context: This review synthesizes the set of papers and resources between 2020 and 2023 

(Saikai et al., Madondo et al., Olaniyi et al., MDPI reviews, Taylor et al., Li et al., and relevant 

2021–2023 articles). It highlights methods, applications, strengths, weaknesses, gaps, and direct 

relevance to my PhD topic: Intelligent Optimization of Multicropping Strategies across Irrigation 

Types Using Genetic Algorithms, Deep Learning, and Particle Swarm Optimization. 

Executive summary 

 

Between 2020 and 2023, research in agricultural AI reveals two key directions: (1) 

deployment of deep learning and reinforcement learning for irrigation scheduling and yield 

optimization, and (2) continued application of metaheuristics (GA, PSO) and hybrids for 

combinatorial agricultural planning. Data augmentation methods (GANs) and simulation- based RL 

frameworks (SWAT + RL) address data scarcity and process fidelity. However, most works focus on 

single-crop systems or controlled simulations, leaving gaps in multi- crop optimization under 

varying irrigation systems. 

 

Paper-by-Paper Annotations (2020–2023) 

1. Saikai et al. (2023) — DRL for irrigation scheduling (arXiv) 

o What: Applies deep reinforcement learning with high-dimensional sensor feedback for irrigation 

control. 

o Strengths: Demonstrates sequential decision-making with sensor-rich 

environments. 

o Limitations: Mostly simulation; generalization to new crops not explored. 

o Relevance: Direct model reference for irrigation scheduling component of my PhD. 

2. Madondo et al. (2023) — SWAT + RL (arXiv) 

o What: Combines SWAT hydrologic model with RL for crop yield and irrigation 

optimization. 

o Strengths: Integrates simulation with RL for realistic feedback. 

o Limitations: Calibration complexity; heavy computational cost. 

o Relevance: Framework for sim-to-real training in different irrigation systems. 

3. Olaniyi et al. (2022) — GANs for image augmentation (arXiv) 

o What: Review of GAN-based augmentation in agriculture. 

o Strengths: Tackles dataset scarcity in crop imaging. 

o Limitations: Synthetic artifacts may degrade model reliability. 

o Relevance: Useful if vision models (crop health, canopy cover) are included in optimization. 

4. MDPI (2022) — DL-based crop yield prediction: Progress and Review 

o What: Reviews LSTM, RNN, CNN-LSTM, and ensemble DL architectures for yield prediction. 

o Strengths: Highlights strong predictive capacity with remote sensing and weather data. 

o Limitations: Limited cross-regional transferability. 

o Relevance: Basis for surrogate yield predictors inside optimization pipelines. 

5. Tian et al. (2022) — Crop yield prediction with DL & Remote Sensing (MDPI) 
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o What: Systematic review of multimodal CNN-LSTM and fusion models. 

o Relevance: Suggests feature fusion methods for irrigation-sensitive yield prediction. 

6. Taylor et al. (2022) — DL for crop yield prediction (Taylor & Francis) 

o What: Survey of DL methods with emphasis on challenges (overfitting, dataset size). 

o Relevance: Reinforces methodological rigor (cross-validation, uncertainty estimation). 

7. Li et al. (2023) — Advances in ML for Agricultural Water Management (IWA Publishing) 

o What: Reviews classical and advanced ML (RF, ANN, LightGBM) in water- use efficiency. 

o Relevance: Complements RL/DRL with interpretable ML baselines. 

8. MDPI (2021) — ML in Agriculture: A Review 

o What: Covers ML fundamentals and applications. 

o Relevance: Provides foundational background for positioning GA/PSO alongside ML/DL. 

9. MDPI (2023) — Crop Yield Estimation Using DL + Irrigation Scheduling 

o What: Links predictive modeling with irrigation decision-making. 

o Relevance: Directly aligned with my dual focus on yield + irrigation 

optimization. 

10. MDPI (2023) — Maize & Soybean Yield Prediction Using Hybrid ML Models 

o What: Systematic survey using hybrid ML. 

o Relevance: Useful case study for hybrid approaches in staple crops. 

 

Thematic synthesis (2020–2023) 

• DRL for irrigation (Saikai, Madondo): Promising but largely simulation-based. Need stronger 

field validation. 

• ML/DL for yield prediction (MDPI, Tian, Taylor, Li): Reliable short-term predictors, 

limited long-term generalization. Hybrid CNN-LSTM dominant. 

• GANs (Olaniyi): Mitigates data scarcity but requires careful validation. 

• Metaheuristics (GA, PSO — general literature): Still strong for combinatorial planning but 

often siloed from DL/DRL approaches. 

 

Gaps & research opportunities (2020–2023) 

1. Lack of multi-crop optimization studies — most focus on single crop. 

2. Limited integration of surrogate yield predictors into GA/PSO/RL loops. 

3. Few studies consider different irrigation systems (drip, surface, sprinkler) in the same 

framework. 

4. Weak field validation of RL policies trained on simulators. 

 

Methodological roadmap (aligned to 2020–2023 insights) 

• Use GA/PSO for crop combination & seasonal allocation. 

• Use DRL for irrigation scheduling within chosen crop systems. 

• Train surrogate yield predictors (CNN-LSTM, ensemble models) for fitness evaluation. 

• Validate on synthetic (SWAT) and real data; ensure transferability. 

• GA (Genetic Algorithm) → crop combination optimization. 

• PSO (Particle Swarm Optimization) → water, fertilizer, and resource optimization. 

• DL (Deep Learning) → prediction tasks (yield, water demand, soil suitability). 

• Reinforcement Learning (RL) – makes real-time decisions on irrigation/crop strategies. 

• Grey Wolf Optimizer (GWO) – strong competitor to PSO in optimization tasks. 

• Artificial Bee Colony (ABC) – effective for resource allocation (like irrigation water). 

• Firefly Algorithm (FA) – good for nonlinear multicropping optimization problems. 

• Differential Evolution (DE) – efficient alternative to GA for optimization. 

• Ant Colony Optimization (ACO) 

• Bat Algorithm 

• Cuckoo Search (CS) 
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• Simulated Annealing (SA) 

• Harmony Search (HS) 

• Support Vector Machines (SVM) (for prediction, but not main optimization 

Combination of Algorithms Analysis GA + PSO + DL 

• GA → global search for crop combinations 

• PSO → fast optimization for irrigation scheduling 

• DL → prediction of yield, water requirement, disease risk 

Balanced combo: 2 optimization + 1 prediction 

Limitation: Needs extra validation for real-time adaptability 

 

GA + PSO + RL 

• GA → crop planning optimization 

• PSO → resource allocation (fertilizer, water) 

• RL → adaptive decision-making (season-by-season learning under uncertainty) 

Best for dynamic irrigation & climate variability 

Limitation: RL requires simulation environment/data for training 

 

GA + DL + RL 

• GA → crop combination optimization 

• DL → predictive modeling (yield, soil fertility, water needs) 

• RL → learns adaptive strategies (e.g., when to irrigate, which crops to mix dynamically) 

Best for intelligence + adaptability 

Limitation: No direct swarm-based optimizer (PSO/GWO missing) 

 

Final Recommendation: 

Use GA + PSO + DL as main combination. Add RL for comparison 

Types of Genetic Algorithms (GA) 

 

GA has several variants based on how population, selection, crossover, and mutation are designed. 

 

Simple Genetic Algorithm (SGA) 

• The basic form of GA. 

• Uses selection, crossover, and mutation on a single population. 

• Good for general optimization problems. 

• Limitation: May converge slowly or get stuck in local optima. 

 

Steady-State Genetic Algorithm (SSGA) 

• Instead of replacing the entire population each generation, only a few individuals are replaced. 

• Ensures better preservation of good solutions. 

• Good for continuous improvement problems (like crop yield optimization). 

 

Elitist Genetic Algorithm 

• Guarantees that the best solution is carried forward to the next generation (elitism). 

• Prevents loss of the fittest solution. 

• Useful in critical optimization tasks where best solutions must not be lost. 

 

Adaptive Genetic Algorithm (AGA) 

• Mutation and crossover rates change dynamically based on population diversity or generation 

count. 

• Prevents premature convergence. 

• Well-suited for complex, non-linear problems like multicropping optimization. 
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Parallel / Distributed GA (Island Model) 

• Population is divided into sub-populations (islands). 

• Each evolves separately, occasionally exchanging individuals. 

• Increases diversity and avoids local optima. 

• Useful when datasets are large (like different irrigation zones). 

 

Hybrid Genetic Algorithm (HGA) 

• Combines GA with other algorithms (e.g., GA + PSO, GA + Local Search, GA + DL). 

• Exploits strengths of multiple methods. 

• For my research, GA could be hybridized with PSO or DL for better accuracy in 

multicropping optimization. 

 

Micro Genetic Algorithm (µGA) 

• Works with very small population sizes (like 5–10 individuals). 

• Runs faster but risks losing diversity. 

• Suitable for real-time or small datasets. 

 

Real-Coded Genetic Algorithm 

• Instead of binary strings, solutions are represented as real numbers. 

• Useful for continuous optimization problems (like irrigation scheduling). 

 

For my research the most suitable GA types are: 

• Adaptive GA → because multicropping optimization is complex and nonlinear. 

• Hybrid GA → GA + PSO or GA + DL can boost performance. 

• Real-Coded GA → since crop/irrigation values are continuous, not binary. 

 

Types of Deep Learning Architectures Artificial Neural Networks (ANN) 

• The basic deep learning model (multi-layer perceptron). 

• Works with fully connected layers. 

• Good for general prediction/classification tasks. 

• Example: Predicting yield from soil, irrigation, and crop inputs. 

 

Convolutional Neural Networks (CNN) 

• Specialized for spatial data (images, grids, maps). 

• Uses convolution + pooling layers to extract patterns. 

• Applications: 

o Crop disease detection (from leaf images). 

o Satellite/drone-based irrigation monitoring. 

• In my research: Could analyse crop field images to optimize planting strategies. 

 

Recurrent Neural Networks (RNN) 

• Designed for sequential/time-series data. 

• Retains memory of past inputs. 

• Limitation: suffers from vanishing gradients for long sequences. 

• Application: Predicting rainfall, irrigation needs, crop growth over time. 

 

Long Short-Term Memory (LSTM) 

• An advanced RNN that avoids vanishing gradients. 

• Very effective for long-term dependencies. 

• Applications: 
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o Predicting crop yield over seasons. 

o Modeling irrigation demand across months. 

• In my research: LSTM can help in seasonal crop optimization. 

 

Gated Recurrent Unit (GRU) 

• A simplified LSTM with fewer parameters (faster). 

• Good for time-series predictions. 

• Example: Forecasting rainfall or soil moisture trends. 

 

Auto encoders 

• Neural networks used for dimensionality reduction & feature learning. 

• Learn compressed representations of data. 

• Applications: 

o Extracting important features from large crop datasets. 

o Noise reduction in sensor/field data. 

 

Generative Adversarial Networks (GANs) 

• Two networks (Generator + Discriminator) compete to create realistic data. 

• Applications: 

o Creating synthetic datasets when real data is missing. 

o Enhancing crop/soil data for training. 

• Very useful for you since you said there is no dataset for multicropping → GANs can generate 

artificial but realistic datasets. 

 

Deep Reinforcement Learning (DRL) 

• Combines DL + RL → learns from environment by trial and error. 

• Applications: 

o Optimizing farming strategies dynamically. 

o Choosing best crop combinations under different irrigation conditions. 

• In my research: Perfect for decision-making in multicropping optimization. 

 

Deep Belief Networks (DBN) 

• Built using stacked Restricted Boltzmann Machines (RBMs). 

• Can learn hierarchical feature representations. 

• Less used today (replaced by CNN/LSTM), but good for unsupervised learning. 

Transformers (Modern DL) 

 

• Uses self-attention mechanisms instead of recurrence. 

• Very powerful for sequential and structured data. 

• Example: Crop sequence planning, large-scale climate prediction. 

 

For my research, the most suitable DL types are: 

1. LSTM/GRU → for time-series crop and irrigation prediction. 

2. GAN → to generate synthetic multicropping datasets (since no dataset exists). 

3. Deep Reinforcement Learning (DRL) → to optimize crop choices & irrigation strategies. 

 

Types of PSO (Particle Swarm Optimization) Basic / Classical PSO 

• Introduced by Kennedy &Eberhart (1995). 

• Standard update rules with inertia, cognitive, and social components. 

• Limitation: easily stuck in local optima. 
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Constriction Factor PSO 

• Adds a constriction coefficient to velocity update. 

• Helps in controlling explosion of velocities and ensures convergence stability. 

 

Inertia Weight PSO 

• Introduces inertia weight (w) to balance exploration vs exploitation. 

o High w → more global search. 

o Low w → more local search. 

• Widely used improvement over classical PSO. 

 

Adaptive PSO 

• Parameters (inertia, acceleration constants) are dynamically adjusted during iterations. 

• Helps avoid premature convergence and adapts to problem complexity. 

 

Binary PSO 

• Designed for discrete optimization problems. 

• Instead of continuous positions, particles flip between 0/1 states. 

• Useful in feature selection, crop selection (yes/no) in my PhD. 

 

Multi-Objective PSO (MOPSO) 

• Handles multiple conflicting objectives (e.g., maximize yield, minimize water, minimize cost). 

• Uses Pareto fronts for optimal trade-offs. 

• In my research: Perfect for balancing yield + water efficiency + profit. 

 

Hybrid PSO 

• Combines PSO with other optimization/ML methods: 

o GA + PSO → crossover + swarm search. 

o PSO + DL → weight optimization in neural networks. 

o PSO + RL → policy optimization. 

• In my research: You can hybridize PSO with GA/DL for crop optimization. 

 

Quantum-behaved PSO (QPSO) 

• Uses quantum mechanics principles to model particle behavior. 

• Provides better global exploration and avoids local minima. 

 

Chaotic PSO 

• Introduces chaotic sequences for parameter updates. 

• Helps improve diversity and avoids early convergence. 

 

Niching PSO 

• Particles are divided into sub-swarms to explore multiple peaks in the search space. 

• Useful for multimodal optimization problems. 

 

Cooperative / Parallel PSO 

• Uses multiple swarms working together. 

• Each swarm explores different parts of the search space → faster convergence. 

 

Fuzzy PSO 

• Uses fuzzy logic to adapt inertia and acceleration dynamically. 

• Effective in problems with uncertainty (like crop yield prediction). 

 

For my research, the most useful PSO types are: 
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1. Multi-Objective PSO (MOPSO) → because you need to balance yield, water, profit. 

2. Binary PSO → for discrete crop selection (yes/no). 

3. Hybrid PSO (GA + PSO + DL) → combining algorithms. 

4. Adaptive PSO → to handle changing crop/irrigation conditions. 

 

Types of Reinforcement Learning Based on Learning Approach 

(a) Value-Based RL 

• Learns a value function (how good a state/action is). 

• Tries to maximize the expected reward. 

• Example: Q-Learning, Deep Q-Networks (DQN). 

• In my research: Can predict the best crop decision at each season step. 

 

(b) Policy-Based RL 

• Directly learns a policy (mapping from states to actions) instead of value. 

• Example: REINFORCE, Policy Gradient methods. 

• In my research: Helps adapt irrigation and crop mix policies directly. 

 

(c) Model-Based RL 

• Learns a model of the environment (transition probabilities, rewards). 

• Uses the model to plan actions. 

• Example: Dyna-Q, MBPO. 

• In my research: Can simulate crop growth & water availability models before acting. 

 

Based on Combination 

(a) Actor–Critic Methods 

• Combines value-based + policy-based approaches. 

• Actor = decides the action (policy). 

• Critic = evaluates the action (value). 

• Example: A3C (Asynchronous Advantage Actor–Critic), DDPG (Deep 

Deterministic Policy Gradient). 

• In my research: Useful for balancing multiple objectives (yield, water, profit). 

 

(b) Model-Free RL 

• Does not learn a model of the environment. 

• Just uses experience (trial-and-error). 

• Examples: Q-Learning, DQN, Policy Gradient. 

• Faster but needs lots of data. 

 

(c) Model-Based RL 

• Builds a simulation/approximation of environment. 

• More data-efficient. 

• Good when crop & soil models are available. 

 

Based on Reward / Exploration Strategy 

(a) On-Policy RL 

• Learns the policy while following it. 

• Example: SARSA, PPO (Proximal Policy Optimization). 

 

(b) Off-Policy RL 

• Learns from past experience / other agents’ experience. 

• Example: Q-Learning, DQN. 

• For my research: Off-policy is better since you can learn from historical 
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crop/irrigation datasets. 

 

Deep Reinforcement Learning (DRL) 

• Uses deep neural networks to approximate value or policy functions. 

• Examples: DQN, A3C, PPO, DDPG, SAC. 

• In my research: Can handle large, complex crop–soil–water datasets. 

 

For my research, the most powerful RL methods are: 

1. Deep RL (DQN, PPO, SAC, DDPG) → to handle large agricultural datasets. 

2. Actor–Critic methods → balance yield, water, profit. 

3. Off-policy RL → use historical farm data instead of only real-time trials. 

4. Model-based RL → simulate crop–soil–irrigation system before deployment. 

 

Hybrid Genetic Algorithm (HGA) 

• GA itself is powerful for crop combination selection, but a hybrid GA (GA + Local Search / GA + 

Neural Network / GA + PSO) improves convergence and avoids premature solutions. 

• In my case: 

o It can select optimal crop mixes for each season (ex: tomato + maize + cowpea). 

o Hybridization allows faster and more accurate optimization under multiple objectives (yield, cost, 

water). 

Deep Reinforcement Learning (DRL) 

• DRL (DQN, PPO, A3C) is ideal because agriculture is a sequential decision-making problem: 

o Which crop to plant this season? 

o How to adjust irrigation dynamically? 

o How to rotate crops next year? 

• DRL learns from trial-and-error, meaning it will continuously improve cropping policies over 

multiple seasons. 

• It adds the adaptive intelligence layer missing in classical algorithms. 

 

Hybrid Particle Swarm Optimization (HPSO) 

• PSO alone is good, but hybrid PSO (PSO + GA / PSO + Local Search / Quantum PSO) gives: 

o Better irrigation scheduling optimization. 

o More accurate resource distribution (fertilizer, water, spacing). 

• Works well with GA (crop selection) and DRL (long-term adaptation). 

 

2. Related Work 

 

• GA and PSO widely applied in yield and resource optimization but mostly for single crops. 

• DL used for yield prediction, soil analysis, and disease detection but rarely integrated 

with optimization models. 

• RL applied in irrigation and climate adaptation but underutilized in multicropping contexts. 

• No comparative/hybrid study addresses crop selection + irrigation optimization together. 

 

3. Methodology (Proposed Framework) Algorithm Roles 

• GA: Crop combination optimization. 

• PSO: Irrigation & resource allocation. 

• DL: Prediction (yield, rainfall, soil suitability). 

• RL: Adaptive decision-making under uncertainty. 

 

Selected Variants 

• GA: Adaptive GA, Hybrid GA, Real-Coded GA. 

• PSO: Multi-Objective PSO, Hybrid PSO, Binary PSO. 
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• DL: LSTM/GRU (time-series prediction), GAN (synthetic dataset generation). 

• RL: Deep RL (DQN, PPO, SAC), Actor–Critic methods. 

 

Framework Design 

• Hybrid GA → Crop selection across seasons. 

• Hybrid PSO → Optimize irrigation & resource scheduling. 

• DL (LSTM, GAN, DRL) → Prediction + dataset creation. 

• RL → Long-term seasonal adaptation. 

 

4. Expected Contributions 

1. Development of real + synthetic multicropping datasets. 

2. Hybrid AI optimization framework (GA + PSO + DL + RL). 

3. Comparative analysis of traditional vs hybrid methods. 

4. Decision-support system for farmers under varied irrigation. 

 

5. Research Plan and Timeline 

• Year 1: Literature survey, dataset creation. 

• Year 2: Implementation of GA, PSO, DL models. 

• Year 3: Integration of RL and seasonal simulations. 

• Year 4: Validation, comparative studies, thesis writing. 

 

6. Conclusion 

This study identifies the research gap in multicropping optimization under different irrigation 

systems and proposes a hybrid framework combining GA, PSO, DL, and RL. The approach is 

expected to improve yield, water-use efficiency, and farmer income. Future work will focus on 

dataset generation, hybrid model validation, and decision-support tool development. The 2020–2023 

literature establishes a strong methodological base in DRL for irrigation and DL for yield 

prediction, supported by meta heuristics for optimization. However, gaps in multicropping 

optimization under diverse irrigation systems and real- world validation create a clear 

opportunity for my PhD research to contribute novel methods and integrative frameworks. 
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Multi-Objective PSO Pareto optimality Yield + water + cost trade- 

off 

Hybrid PSO Combines with GA/DL/RL Stronger optimization for 

crops 

Quantum PSO Uses quantum behavior Better global exploration 

Chaotic PSO Uses chaos sequences Avoids premature 

convergence 

Niching PSO Sub-swarms for multi-peak Multi-crop optimization 

Cooperative PSO Parallel swarms Faster convergence 

Fuzzy PSO Uses fuzzy logic for updates Handles uncertainty in 

farming 

 

Table: Types of Deep Learning Architectures 

DL Type Key Feature PhD Relevance 

ANN Basic DL model General prediction (yield, irrigation) 

CNN Image analysis Crop disease, satellite/drone images 

RNN Sequential learning Rainfall/irrigation prediction 

LSTM Long-term memory Seasonal crop yield optimization 

GRU Faster RNN Rainfall/soil trend prediction 

Autoencoder Dimensionality reduction Extract crop features 

GAN Synthetic data generation Create multicropping datasets 

DRL DL + RL for decisions Optimize crop combinations dynamically 

DBN Hierarchical unsupervised 

learning 

Early crop modeling 

Transformers Self-attention Large-scale sequence & climate data 

 

Table: Types of Reinforcement Learning 

RL Type Key Idea PhD Relevance 

Value-Based Learn value function Crop decision optimization 

Policy-Based Directly learn policy Irrigation/crop strategies 

Model-Based Learn environment model Simulating crop growth & irrigation 

Actor–Critic Combine value + policy Balancing yield & cost 

On-Policy Learns while executing Online adaptation 

Off-Policy Learns from past data Learning from historical data 

Deep RL Uses deep neural networks Handles complex crop systems 

Table: Research Plan and Timeline 

Year Activities 

Year 1 Literature survey, dataset creation 

Year 2 Implementation of GA, PSO, DL models 

Year 3 Integration of RL and seasonal simulations 

Year 4 Validation, comparative studies, thesis 

writing 

 


