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Abstract

Agriculture plays a central role in food security and rural livelihoods, yet traditional
monocropping and intuition-based decision-making often lead to low productivity and inefficient
resource use. Multicropping improves soil fertility, income diversification, and sustainability, but
optimizing crop combinations across irrigation systems is a highly complex problem. Current studies
are limited by the absence of benchmark datasets, single-crop focus, and reliance on isolated
algorithms. This paper surveys the role of Genetic Algorithms (GA), Particle Swarm Optimization
(PSO), Deep Learning (DL), and Reinforcement Learning (RL) in agricultural optimization, and
proposes a hybrid framework that integrates GA, PSO, and DL as the core, with RL as a comparative
adaptive layer. Selected algorithmic variants such as Adaptive GA, Multi-Objective PSO,
LSTM/GRU, and Deep RL are identified as most suitable for multicropping. The proposed approach
aims to generate synthetic datasets, optimize crop-irrigation strategies, and provide a decision-
support tool for farmers.

. Introduction

Agriculture still depends on monocropping and intuition — low yield, poor water use, unstable
income.

Multicropping is beneficial but optimization requires balancing soil type, water, crop compatibility,
and climate.

Research gaps:

No public datasets for multicropping + irrigation.

Existing work focuses on single crops.

Limited hybrid/comparative use of Al algorithms.

RL, GWO, ABC, FA, and DE remain underexplored.

Contribution of this study: Propose a hybrid Al framework (GA + PSO + DL + RL) for intelligent
multicropping optimization.

Problem Statement

Agriculture is central to food security and rural livelihoods. Traditional practices often rely on
monocropping or farmers’ intuition for crop and irrigation decisions, leading to low productivity,
poor income stability, and inefficient resource use.

Multicropping offers advantages such as improved soil fertility, income diversification, and
better resource utilization. However, optimizing multicropping strategies across irrigation types
(drip, sprinkler, flood, etc.) is highly complex. It requires balancing soil properties, water
availability, crop compatibility, climatic factors, and economic returns.

Despite advances in agricultural informatics, major challenges remain:

Lack of datasets: No publicly available benchmark dataset exists for multicropping optimization.
Single focus: Most works optimize only single crops, not multicropping systems.

Algorithmic limitations: Existing studies usually employ a single algorithm (e.g., GA, PSO, DL)
in isolation, which limits performance.
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No comparative/hybrid framework: To date, no comprehensive study has compared or integrated
multiple Al and optimization algorithms for multicropping + irrigation optimization.

Underexplored algorithms: Algorithms like Reinforcement Learning (RL), Grey Wolf
Optimizer (GWO), Artificial Bee Colony (ABC), Firefly Algorithm (FA), and Differential
Evolution (DE) have shown promise in related optimization problems but are not yet applied to
multicropping.

Thus, there is a critical research gap in creating a dataset-driven, comparative, and intelligent
optimization framework that combines and evaluates multiple algorithms GA, PSO, DL, RL,
GWO, ABC, FA, and DE to identify optimal multicropping strategies across irrigation systems.

Literature Review (2020-2023)

Context: This review synthesizes the set of papers and resources between 2020 and 2023
(Saikai et al., Madondo et al., Olaniyi et al., MDPI reviews, Taylor et al., Li et al., and relevant
2021-2023 articles). It highlights methods, applications, strengths, weaknesses, gaps, and direct
relevance to my PhD topic: Intelligent Optimization of Multicropping Strategies across Irrigation
Types Using Genetic Algorithms, Deep Learning, and Particle Swarm Optimization.

Executive summary

Between 2020 and 2023, research in agricultural Al reveals two key directions: (1)
deployment of deep learning and reinforcement learning for irrigation scheduling and vyield
optimization, and (2) continued application of metaheuristics (GA, PSO) and hybrids for
combinatorial agricultural planning. Data augmentation methods (GANS) and simulation- based RL
frameworks (SWAT + RL) address data scarcity and process fidelity. However, most works focus on
single-crop systems or controlled simulations, leaving gaps in multi- crop optimization under
varying irrigation systems.

Paper-by-Paper Annotations (2020-2023)

1. Saikai et al. (2023) — DRL for irrigation scheduling (arXiv)
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What: Applies deep reinforcement learning with high-dimensional sensor feedback for irrigation
control.

Strengths: Demonstrates sequential decision-making with sensor-rich
environments.

Limitations: Mostly simulation; generalization to new crops not explored.

Relevance: Direct model reference for irrigation scheduling component of my PhD.

Madondo et al. (2023) — SWAT + RL (arXiv)

What: Combines SWAT hydrologic model with RL for crop yield and irrigation
optimization.

Strengths: Integrates simulation with RL for realistic feedback.

Limitations: Calibration complexity; heavy computational cost.

Relevance: Framework for sim-to-real training in different irrigation systems.

Olaniyi et al. (2022) — GANSs for image augmentation (arXiv)

What: Review of GAN-based augmentation in agriculture.

Strengths: Tackles dataset scarcity in crop imaging.

Limitations: Synthetic artifacts may degrade model reliability.

Relevance: Useful if vision models (crop health, canopy cover) are included in optimization.
MDPI (2022) — DL-based crop yield prediction: Progress and Review

What: Reviews LSTM, RNN, CNN-LSTM, and ensemble DL architectures for yield prediction.
Strengths: Highlights strong predictive capacity with remote sensing and weather data.
Limitations: Limited cross-regional transferability.

Relevance: Basis for surrogate yield predictors inside optimization pipelines.

Tian et al. (2022) — Crop yield prediction with DL & Remote Sensing (MDPI)
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What: Systematic review of multimodal CNN-LSTM and fusion models.

Relevance: Suggests feature fusion methods for irrigation-sensitive yield prediction.

Taylor et al. (2022) — DL for crop yield prediction (Taylor & Francis)

What: Survey of DL methods with emphasis on challenges (overfitting, dataset size).
Relevance: Reinforces methodological rigor (cross-validation, uncertainty estimation).

Li et al. (2023) — Advances in ML for Agricultural Water Management (IWA Publishing)
What: Reviews classical and advanced ML (RF, ANN, LightGBM) in water- use efficiency.
Relevance: Complements RL/DRL with interpretable ML baselines.

MDPI (2021) — ML in Agriculture: A Review

What: Covers ML fundamentals and applications.

Relevance: Provides foundational background for positioning GA/PSO alongside ML/DL.
MDPI (2023) — Crop Yield Estimation Using DL + Irrigation Scheduling

What: Links predictive modeling with irrigation decision-making.

Relevance: Directly aligned with my dual focus on vyield + irrigation
optimization.

. MDPI (2023) — Maize & Soybean Yield Prediction Using Hybrid ML Models

What: Systematic survey using hybrid ML.
Relevance: Useful case study for hybrid approaches in staple crops.

Thematic synthesis (2020-2023)
DRL for irrigation (Saikai, Madondo): Promising but largely simulation-based. Need stronger
field validation.

ML/DL for yield prediction (MDPI, Tian, Taylor, Li): Reliable short-term predictors,
limited long-term generalization. Hybrid CNN-LSTM dominant.

GANs (Olaniyi): Mitigates data scarcity but requires careful validation.

Metaheuristics (GA, PSO — general literature): Still strong for combinatorial planning but
often siloed from DL/DRL approaches.

Gaps & research opportunities (2020-2023)

Lack of multi-crop optimization studies — most focus on single crop.

Limited integration of surrogate yield predictors into GA/PSO/RL loops.

Few studies consider different irrigation systems (drip, surface, sprinkler) in the same
framework.

Weak field validation of RL policies trained on simulators.

Methodological roadmap (aligned to 2020-2023 insights)

Use GA/PSO for crop combination & seasonal allocation.

Use DRL for irrigation scheduling within chosen crop systems.

Train surrogate yield predictors (CNN-LSTM, ensemble models) for fitness evaluation.
Validate on synthetic (SWAT) and real data; ensure transferability.

GA (Genetic Algorithm) — crop combination optimization.

PSO (Particle Swarm Optimization) — water, fertilizer, and resource optimization.

DL (Deep Learning) — prediction tasks (yield, water demand, soil suitability).
Reinforcement Learning (RL) — makes real-time decisions on irrigation/crop strategies.
Grey Wolf Optimizer (GWO) — strong competitor to PSO in optimization tasks.

Artificial Bee Colony (ABC) — effective for resource allocation (like irrigation water).
Firefly Algorithm (FA) — good for nonlinear multicropping optimization problems.
Differential Evolution (DE) — efficient alternative to GA for optimization.

Ant Colony Optimization (ACO)

Bat Algorithm

Cuckoo Search (CS)
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Simulated Annealing (SA)

Harmony Search (HS)

Support Vector Machines (SVM) (for prediction, but not main optimization

Combination of Algorithms Analysis GA + PSO + DL

GA — global search for crop combinations

PSO — fast optimization for irrigation scheduling

DL — prediction of yield, water requirement, disease risk
Balanced combo: 2 optimization + 1 prediction

Limitation: Needs extra validation for real-time adaptability

GA + PSO + RL

GA — crop planning optimization

PSO — resource allocation (fertilizer, water)

RL — adaptive decision-making (season-by-season learning under uncertainty)
Best for dynamic irrigation & climate variability

Limitation: RL requires simulation environment/data for training

GA + DL +RL

GA — crop combination optimization

DL — predictive modeling (yield, soil fertility, water needs)

RL — learns adaptive strategies (e.g., when to irrigate, which crops to mix dynamically)
Best for intelligence + adaptability

Limitation: No direct swarm-based optimizer (PSO/GWO missing)

Final Recommendation:
Use GA + PSO + DL as main combination. Add RL for comparison
Types of Genetic Algorithms (GA)

GA has several variants based on how population, selection, crossover, and mutation are designed.

Simple Genetic Algorithm (SGA)

The basic form of GA.

Uses selection, crossover, and mutation on a single population.
Good for general optimization problems.

Limitation: May converge slowly or get stuck in local optima.

Steady-State Genetic Algorithm (SSGA)

Instead of replacing the entire population each generation, only a few individuals are replaced.
Ensures better preservation of good solutions.

Good for continuous improvement problems (like crop yield optimization).

Elitist Genetic Algorithm

Guarantees that the best solution is carried forward to the next generation (elitism).
Prevents loss of the fittest solution.

Useful in critical optimization tasks where best solutions must not be lost.

Adaptive Genetic Algorithm (AGA)

Mutation and crossover rates change dynamically based on population diversity or generation
count.

Prevents premature convergence.

Well-suited for complex, non-linear problems like multicropping optimization.
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Parallel / Distributed GA (Island Model)

Population is divided into sub-populations (islands).

Each evolves separately, occasionally exchanging individuals.
Increases diversity and avoids local optima.

Useful when datasets are large (like different irrigation zones).

Hybrid Genetic Algorithm (HGA)
e Combines GA with other algorithms (e.g., GA + PSO, GA + Local Search, GA + DL).
e Exploits strengths of multiple methods.
e For my research, GA could be hybridized with PSO or DL for better accuracy in
multicropping optimization.

Micro Genetic Algorithm (UGA)
e Works with very small population sizes (like 5-10 individuals).
e Runs faster but risks losing diversity.
e Suitable for real-time or small datasets.

Real-Coded Genetic Algorithm
e Instead of binary strings, solutions are represented as real numbers.
e Useful for continuous optimization problems (like irrigation scheduling).

For my research the most suitable GA types are:
e Adaptive GA — because multicropping optimization is complex and nonlinear.
e Hybrid GA — GA + PSO or GA + DL can boost performance.
e Real-Coded GA — since crop/irrigation values are continuous, not binary.

Types of Deep Learning Architectures Artificial Neural Networks (ANN)
The basic deep learning model (multi-layer perceptron).

Works with fully connected layers.

Good for general prediction/classification tasks.

Example: Predicting yield from soil, irrigation, and crop inputs.

Convolutional Neural Networks (CNN)
e Specialized for spatial data (images, grids, maps).
Uses convolution + pooling layers to extract patterns.
Applications:
Crop disease detection (from leaf images).
Satellite/drone-based irrigation monitoring.
In my research: Could analyse crop field images to optimize planting strategies.

® O O

Recurrent Neural Networks (RNN)

Designed for sequential/time-series data.

Retains memory of past inputs.

Limitation: suffers from vanishing gradients for long sequences.
Application: Predicting rainfall, irrigation needs, crop growth over time.

Long Short-Term Memory (LSTM)
e Anadvanced RNN that avoids vanishing gradients.
e Very effective for long-term dependencies.
e Applications:
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Predicting crop yield over seasons.

Modeling irrigation demand across months.

In my research: LSTM can help in seasonal crop optimization.

Gated Recurrent Unit (GRU)

A simplified LSTM with fewer parameters (faster).
Good for time-series predictions.

Example: Forecasting rainfall or soil moisture trends.

Auto encoders

Neural networks used for dimensionality reduction & feature learning.
Learn compressed representations of data.

Applications:

Extracting important features from large crop datasets.

Noise reduction in sensor/field data.

Generative Adversarial Networks (GANSs)

Two networks (Generator + Discriminator) compete to create realistic data.

Applications:

Creating synthetic datasets when real data is missing.

Enhancing crop/soil data for training.

Very useful for you since you said there is no dataset for multicropping — GANs can generate
artificial but realistic datasets.

Deep Reinforcement Learning (DRL)

Combines DL + RL — learns from environment by trial and error.
Applications:

Optimizing farming strategies dynamically.

Choosing best crop combinations under different irrigation conditions.

In my research: Perfect for decision-making in multicropping optimization.

Deep Belief Networks (DBN)

Built using stacked Restricted Boltzmann Machines (RBMs).

Can learn hierarchical feature representations.

Less used today (replaced by CNN/LSTM), but good for unsupervised learning.
Transformers (Modern DL)

Uses self-attention mechanisms instead of recurrence.
Very powerful for sequential and structured data.
Example: Crop sequence planning, large-scale climate prediction.

For my research, the most suitable DL types are:

LSTM/GRU — for time-series crop and irrigation prediction.

GAN — to generate synthetic multicropping datasets (since no dataset exists).

Deep Reinforcement Learning (DRL) — to optimize crop choices & irrigation strategies.

Types of PSO (Particle Swarm Optimization) Basic / Classical PSO

Introduced by Kennedy &Eberhart (1995).
Standard update rules with inertia, cognitive, and social components.
Limitation: easily stuck in local optima.
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Constriction Factor PSO

Adds a constriction coefficient to velocity update.

Helps in controlling explosion of velocities and ensures convergence stability.

Inertia Weight PSO

Introduces inertia weight (w) to balance exploration vs exploitation.
High w — more global search.

Low w — more local search.

Widely used improvement over classical PSO.

Adaptive PSO
Parameters (inertia, acceleration constants) are dynamically adjusted during iterations.
Helps avoid premature convergence and adapts to problem complexity.

Binary PSO

Designed for discrete optimization problems.

Instead of continuous positions, particles flip between 0/1 states.
Useful in feature selection, crop selection (yes/no) in my PhD.

Multi-Objective PSO (MOPSO)

Handles multiple conflicting objectives (e.g., maximize yield, minimize water, minimize cost).
Uses Pareto fronts for optimal trade-offs.

In my research: Perfect for balancing yield + water efficiency + profit.

Hybrid PSO

Combines PSO with other optimization/ML methods:

GA + PSO — crossover + swarm search.

PSO + DL — weight optimization in neural networks.

PSO + RL — policy optimization.

In my research: You can hybridize PSO with GA/DL for crop optimization.

Quantum-behaved PSO (QPSO)
Uses quantum mechanics principles to model particle behavior.
Provides better global exploration and avoids local minima.

Chaotic PSO
Introduces chaotic sequences for parameter updates.
Helps improve diversity and avoids early convergence.

Niching PSO
Particles are divided into sub-swarms to explore multiple peaks in the search space.
Useful for multimodal optimization problems.

Cooperative / Parallel PSO
Uses multiple swarms working together.
Each swarm explores different parts of the search space — faster convergence.

Fuzzy PSO
Uses fuzzy logic to adapt inertia and acceleration dynamically.
Effective in problems with uncertainty (like crop yield prediction).

For my research, the most useful PSO types are:
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Multi-Objective PSO (MOPSO) — because you need to balance yield, water, profit.
Binary PSO — for discrete crop selection (yes/no).

Hybrid PSO (GA + PSO + DL) — combining algorithms.

Adaptive PSO — to handle changing crop/irrigation conditions.

Awnh e

Types of Reinforcement Learning Based on Learning Approach
(a) Value-Based RL
e Learns a value function (how good a state/action is).
e Tries to maximize the expected reward.
o Example: Q-Learning, Deep Q-Networks (DQN).
e Inmy research: Can predict the best crop decision at each season step.

(b) Policy-Based RL

o Directly learns a policy (mapping from states to actions) instead of value.
o Example: REINFORCE, Policy Gradient methods.

e Inmy research: Helps adapt irrigation and crop mix policies directly.

(c) Model-Based RL

o Learns a model of the environment (transition probabilities, rewards).

e Uses the model to plan actions.

« Example: Dyna-Q, MBPO.

e In my research: Can simulate crop growth & water availability models before acting.

Based on Combination

(a) Actor—Critic Methods

o Combines value-based + policy-based approaches.

e Actor = decides the action (policy).

e Critic = evaluates the action (value).

e Example: A3C (Asynchronous Advantage Actor—Critic), DDPG (Deep
Deterministic Policy Gradient).

e Inmy research: Useful for balancing multiple objectives (yield, water, profit).

(b) Model-Free RL

« Does not learn a model of the environment.

e Just uses experience (trial-and-error).

o Examples: Q-Learning, DQN, Policy Gradient.
« Faster but needs lots of data.

(c) Model-Based RL

o Builds a simulation/approximation of environment.
e More data-efficient.
e Good when crop & soil models are available.

Based on Reward / Exploration Strategy
(a) On-Policy RL
« Learns the policy while following it.
o Example: SARSA, PPO (Proximal Policy Optimization).

(b) Off-Policy RL

« Learns from past experience / other agents’ experience.

o Example: Q-Learning, DQN.

e For my research: Off-policy is better since you can learn from historical
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crop/irrigation datasets.

Deep Reinforcement Learning (DRL)

Uses deep neural networks to approximate value or policy functions.
Examples: DQN, A3C, PPO, DDPG, SAC.

In my research: Can handle large, complex crop—soil-water datasets.

For my research, the most powerful RL methods are:

Deep RL (DQN, PPO, SAC, DDPG) — to handle large agricultural datasets.
Actor-Critic methods — balance yield, water, profit.

Off-policy RL — use historical farm data instead of only real-time trials.
Model-based RL — simulate crop-soil-irrigation system before deployment.

Hybrid Genetic Algorithm (HGA)
GA itself is powerful for crop combination selection, but a hybrid GA (GA + Local Search / GA +
Neural Network / GA + PSO) improves convergence and avoids premature solutions.
Inmy case:

It can select optimal crop mixes for each season (ex: tomato + maize + cowpea).
Hybridization allows faster and more accurate optimization under multiple objectives (yield, cost,
water).

Deep Reinforcement Learning (DRL)

DRL (DQN, PPO, A3C) is ideal because agriculture is a sequential decision-making problem:
Which crop to plant this season?

How to adjust irrigation dynamically?

How to rotate crops next year?

DRL learns from trial-and-error, meaning it will continuously improve cropping policies over
multiple seasons.

It adds the adaptive intelligence layer missing in classical algorithms.

Hybrid Particle Swarm Optimization (HPSO)

PSO alone is good, but hybrid PSO (PSO + GA / PSO + Local Search / Quantum PSO) gives:
Better irrigation scheduling optimization.

More accurate resource distribution (fertilizer, water, spacing).

Works well with GA (crop selection) and DRL (long-term adaptation).

. Related Work

GA and PSO widely applied in yield and resource optimization but mostly for single crops.
DL used for yield prediction, soil analysis, and disease detection but rarely integrated
with optimization models.

RL applied in irrigation and climate adaptation but underutilized in multicropping contexts.

No comparative/hybrid study addresses crop selection + irrigation optimization together.

3. Methodology (Proposed Framework) Algorithm Roles
GA: Crop combination optimization.

PSO: Irrigation & resource allocation.

DL.: Prediction (yield, rainfall, soil suitability).

RL: Adaptive decision-making under uncertainty.

Selected Variants
GA: Adaptive GA, Hybrid GA, Real-Coded GA.
PSO: Multi-Objective PSO, Hybrid PSO, Binary PSO.
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DL: LSTM/GRU (time-series prediction), GAN (synthetic dataset generation).
RL: Deep RL (DQN, PPO, SAC), Actor—Critic methods.

Framework Design

Hybrid GA — Crop selection across seasons.

Hybrid PSO — Optimize irrigation & resource scheduling.
DL (LSTM, GAN, DRL) — Prediction + dataset creation.
RL — Long-term seasonal adaptation.

d ™
Data Sources
(Soil, Weather, Remote sensing, Crop
history)

- >

I

Preprocessing & GAN Augmentaton

X Yield prediction /sginmenion
J

|

' N

Deep Learning Models
(LSTM, CNN, GRU)

:

Optimization Layer

GA / PSO - crop mix
optimization

DRL - irrigation scheduling

|

Decision Support System

Recommendations for mul-
ticropping + irrigation

4. Expected Contributions

Development of real + synthetic multicropping datasets.
Hybrid Al optimization framework (GA + PSO + DL + RL).
Comparative analysis of traditional vs hybrid methods.
Decision-support system for farmers under varied irrigation.

5. Research Plan and Timeline
Year 1: Literature survey, dataset creation.
Year 2: Implementation of GA, PSO, DL models.
Year 3: Integration of RL and seasonal simulations.
Year 4: Validation, comparative studies, thesis writing.

6. Conclusion

This study identifies the research gap in multicropping optimization under different irrigation
systems and proposes a hybrid framework combining GA, PSO, DL, and RL. The approach is
expected to improve yield, water-use efficiency, and farmer income. Future work will focus on
dataset generation, hybrid model validation, and decision-support tool development. The 2020-2023
literature establishes a strong methodological base in DRL for irrigation and DL for yield
prediction, supported by meta heuristics for optimization. However, gaps in multicropping
optimization under diverse irrigation systems and real- world validation create a clear
opportunity for my PhD research to contribute novel methods and integrative frameworks.
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Table: Types of Genetic Algorithms (GA)

Type Key ldea PhD Relevance

Simple GA Basic version General problems

Steady-State GA Replace few individuals Continuous improvement

Elitist GA Preserve best solutions Critical optimization

Adaptive GA Dynamic mutation/crossover [Complex, non-linear
problems

Parallel/Distributed GA Multiple sub-populations Large datasets, irrigation
zones

Hybrid GA Combine GA with others Agriculture optimization
(GA+PSO, GA+DL)

Micro GA Small populations Real-time, small data

Real-Coded GA Real numbers instead of Continuous parameters

binary (water, nutrients)

Table: Types of Particle Swarm Optimization (PSO)

Type Key Idea PhD Relevance

Basic PSO Original version Baseline optimization

Constriction PSO Stability via constriction Controlled convergence
factor

Inertia Weight PSO Balances exploration vs Better optimization
exploitation

Adaptive PSO Parameters change More flexible optimization
dynamically

Binary PSO Works with 0/1 decisions Crop selection (yes/no)
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Multi-Objective PSO

Pareto optimality

Yield + water + cost trade-
off

Hybrid PSO

Combines with GA/DL/RL

Stronger optimization for
crops

Quantum PSO

Uses qua

ntum behavior

Better global exploration

Chaotic PSO Uses chaos sequences /Avoids premature
convergence

Niching PSO Sub-swarms for multi-peak  |Multi-crop optimization

Cooperative PSO Parallel swarms Faster convergence

Fuzzy PSO Uses fuzzy logic for updates [Handles uncertainty in

farming

Table: Types of

Deep Learning Architectures

DL Type Key Feature PhD Relevance
ANN Basic DL model General prediction (yield, irrigation)
CNN Image analysis Crop disease, satellite/drone images
RNN Sequential learning Rainfall/irrigation prediction
LSTM Long-term memory Seasonal crop yield optimization
GRU Faster RNN Rainfall/soil trend prediction
Autoencoder Dimensionality reduction Extract crop features
GAN Synthetic data generation Create multicropping datasets
DRL DL + RL for decisions Optimize crop combinations dynamically
DBN Hierarchical unsupervised  [Early crop modeling

learning
Transformers Self-attention Large-scale sequence & climate data

Table: Types of

Reinforcement Learning

RL Type [Key Idea PhD Relevance
Value-Based |Learn value function Crop decision optimization
Policy-Based Directly learn policy Irrigation/crop strategies
Model-Based|Learn environment model [Simulating crop growth & irrigation
Actor—Critic [Combine value + policy [Balancing yield & cost
On-Policy  |Learns while executing  |Online adaptation
Off-Policy  |Learns from past data Learning from historical data
Deep RL Uses deep neural networks|Handles complex crop systems
Table: Research Plan and Timeline
Year Activities
Year 1 Literature survey, dataset creation
Year 2 Implementation of GA, PSO, DL models
Year 3 Integration of RL and seasonal simulations
Year 4 Validation, comparative studies, thesis

writing

Volume-59, No.5 : 2025




