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Abstract 

Cardiovascular diseases (CVDs) remain among the leading global causes of death because this 

now affect younger populations at increasing rates throughout India and other countries. This research 

investigates deep learning capabilities through analysis of two leading models: the Multilayer 

Perceptron (MLP) and Convolutional Neural Network (CNN). The research uses one million patient 

records containing 13 clinical indicators and binary classification outcomes to explore four sequential 

stages beginning with benchmarking followed by feature selection and then k-fold cross-validation 

and Bayesian Optimization for hyperparameter tuning. The initial assessment showed that MLP 

performed slightly better than CNN but both models achieved significant accuracy and generalization 

improvements after feature refinement. The prediction performance remained stable when the model 

was validated through multiple data split cross-validation tests. The ensemble model which combined 

optimized architectures produced the best results with accuracy at 92.94% and precision at 92.27% 

and recall at 92.70% and specificity at 93.11% and F1-score at 92.48%. The research demonstrates 

that developing scalable clinical heart disease detection systems requires machine learning techniques 

with advanced methods and thorough model optimization and strategic feature development. 
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I. Introduction 

The most common cause of death around the world is still cardiovascular diseases (CVDs), which 

include a wide range of conditions affecting the heart and blood vessels. It is concerning that India is 

bearing an ever-increasingly disproportionate amount of this load. Recent data indicates that India has 

a national public health emergency due to its age-standardized CVD death rate of 282 per 100,000, 

which is much higher than the global average of 233 per 100,000 (PMC, 2025). Furthermore, 

cardiovascular diseases, which frequently strike people almost ten years earlier than in Western 

countries, now account for more than 26 percent of all deaths in India. Given that almost half of all 

heart attack patients in India are under 40, this early onset is particularly concerning. Over 18 sudden 

cardiac deaths among people under 40 were reported in Karnataka alone in a single month in mid-

2025, drawing increased attention from medical authorities and calls for early detection measures. 

Traditional diagnostic approaches, many of which rely on invasive procedures and thorough 

clinical evaluations, face significant difficulties due to the complexity and multifactorial nature of heart 

disease caused by inheritance, environmental triggers, and lifestyle choices. In this regard, the field of 

cardiovascular risk prediction is undergoing a revolution due to machine learning (ML), and more 

especially, neural networks. The ability to analyze complex, non-linear interactions within large 

clinical datasets patterns that are frequently undetectable to even experienced clinicians is a unique 

advantage of these data-driven models. 

Neural networks, inspired by the architecture of the human brain, are particularly well-suited to 

medical diagnostics. Their ability to learn from data and generalize to new cases has demonstrated 

promising results across multiple applications in healthcare. Prior studies have successfully 

implemented Convolutional Neural Networks (CNNs) for interpreting cardiac imaging and employed 

ensemble learning techniques to enhance diagnostic robustness and accuracy [1,2]. Chowdhury et al. 
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[3] emphasize the potential of neural networks in extracting clinically relevant insights that surpass the 

capabilities of traditional statistical models. 

A wider pattern toward intelligent healthcare systems is reflected in an increasing amount of 

research in this area. In addition to enhancing early detection, these models are also helping with 

patient stratification, resource allocation, and customized treatment planning. The need for scalable, 

precise, and non-invasive predictive tools is growing as cardiovascular risk keeps rising, especially in 

younger populations. The primary objective of this research is to conduct a rigorous, comparative 

evaluation of different neural network architectures for heart disease prediction. By examining their 

performance across a range of evaluation metrics, this study aims to identify the most effective models 

and configurations for clinical application. The findings are expected to contribute valuable insights 

toward the development of more reliable, interpretable, and clinically applicable decision-support 

systems ultimately assisting in early diagnosis and practical management of cardiovascular disease. 

 

II. Literature Review 

Predicting cardiovascular disease (CVD) continues to be a prominent area of research, largely due 

to the immense global burden posed by heart-related conditions. While traditional machine learning 

models have achieved commendable results in diagnostic accuracy, the advent of deep learning has 

introduced new possibilities for building more nuanced and effective prediction systems. Among these 

advancements, Multilayer Perceptrons (MLPs) and Convolutional Neural Networks (CNNs) have 

gained considerable traction for their ability to uncover complex, non-linear associations in structured 

medical data. In a notable study, Blessan and Nineta [4] utilized Bayesian Optimization to fine-tune 

deep neural networks for heart disease prediction, achieving high levels of precision and accuracy from 

structured clinical datasets. Building on this, Ahsan and Siddique [5] offered a comprehensive review 

of machine and deep learning methods for cardiovascular risk classification. Their work stressed the 

importance of rigorous evaluation methods, including cross-validation and class balancing, for 

ensuring model reliability. The role of feature selection has also emerged as a key component in 

boosting model performance. Saqlain et al. [6] demonstrated how techniques like the Fisher score and 

LASSO can significantly refine input features, while Bharti et al. [7] conducted comparative studies 

revealing that hybrid models those combining traditional machine learning with deep learning perform 

better when complemented with feature engineering. CNNs, in particular, have shown notable promise 

in healthcare applications involving time-series and sensor-based data. Shafi et al. [8] highlighted how 

CNNs, when applied to wearable IoT health monitoring systems, effectively captured both spatial and 

temporal dynamics. Meanwhile, Deepika and Balaji [9] explored the Dragonfly Algorithm, a 

biologically inspired metaheuristic, for tuning deep learning models. Their results indicated substantial 

improvements in performance and adaptability for clinical data scenarios. 

Expanding the scope further, Hassani et al. [10] introduced a hybrid architecture combining neural 

networks with decision trees. This integration offered improved accuracy and interpretability—a 

critical factor in clinical contexts. Similarly, Gao and Ding [11] investigated Bayesian-based ensemble 

learning, showing that it outperformed conventional grid and random search methods in both 

predictive power and computational efficiency. In terms of real-time applicability, Khan et al. [12] 

merged CNNs with IoT frameworks to enable on-the-fly predictions via modular deep learning 

pipelines. Li et al. [13] took a genetic algorithm approach to feature selection, blending it with CNNs 

and SVMs to yield high-accuracy predictions on multimodal cardiac datasets. Jafari et al. [14] provided 

further validation of CNN efficacy, reviewing deep learning applications in cardiac MRI for CVD 

detection. Though rooted in imaging data, their findings underscore CNNs’ broader applicability in 

recognizing complex diagnostic patterns. In line with ensemble strategies, Islam et al. [15] presented 

a stacked classifier model that consistently outperformed standalone algorithms. Likewise, Maach et 

al. [16] proposed a voting-based ensemble system for coronary artery disease, demonstrating enhanced 

sensitivity and specificity suitable for clinical deployment. 

Taken together, these studies highlight the evolving landscape of heart disease prediction—one 

where deep learning models, particularly MLPs and CNNs, are augmented through optimization 

strategies like Bayesian tuning, robust feature selection, and ensemble modeling. The present research 
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builds on these foundations by integrating these techniques into a unified system aimed at improving 

predictive accuracy, model interpretability, and clinical relevance. 

 

III. Methodology 

 
Fig 1: Proposed Methodology 

A. Dataset 

The dataset used in this study encompasses more than one million individual patient records, 

offering a comprehensive and statistically powerful basis for research into heart disease prediction. It 

includes a diverse mix of demographic information, clinical indicators, and both binary and categorical 

diagnostic variables, mirroring the types of data typically assessed in real-world cardiovascular 

evaluations. Notably, the distribution of cases appears balanced across both heart disease-positive and 

negative classes, making the dataset well-suited for binary classification tasks and helping ensure 

model robustness and generalizability. 

Table 1: Attribute Description 

S.No 

 

Attribute Data Type Domain / Categories 

Range 

(Min – 

Max) 

1  age Numerical Many ~25 – 80 

2  sex Categorical [0 = female, 1 = male] 0 – 1 

3  chest Categorical [0, 1, 2, 3, 4] 0 – 4 

4  resting_blood_pressure Numerical Many ~80 – 200 

5 
 
serum_cholestoral Numerical Many 

~100 – 

550 

6  fasting_blood_sugar Categorical [0 = False, 1 = True] 0 – 1 

7  resting_electrocardiographic_results Categorical [0, 1, 2] 0 – 2 

8  maximum_heart_rate_achieved Numerical Many ~60 – 210 

9  exercise_induced_angina Categorical [0 = No, 1 = Yes] 0 – 1 

10  oldpeak Numerical Many ~0 – 6.5 

11  slope Categorical [1, 2, 3] 1 – 3 

12  number_of_major_vessels Categorical [0, 1, 2, 3] 0 – 3 
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S.No 

 

Attribute Data Type Domain / Categories 

Range 

(Min – 

Max) 

13 
 
thal Categorical 

[3 = normal, 6 = fixed 

defect, 7 = reversible] 
3 – 7 

14 
 
class (target) Categorical 

[0 = no disease, 1 = 

disease] 
0 – 1 

 

B. Data preprocessing: 

Preparing raw data is a crucial early stage in any machine learning project, ensuring that models are 

trained on clean, consistent input. For numerical features with missing values, mean imputation is used 

this technique replaces gaps with the average value of the respective column, helping preserve the 

dataset's overall structure without discarding potentially useful records. When working with 

categorical (non-numeric) variables, label encoding is applied to convert text-based categories into 

unique numerical values. This transformation makes the data compatible with most machine learning 

algorithms, allowing them to process the information effectively and identify patterns more accurately 

 

C. Feature Selection 

To improve both performance and generalization in deep learning models for heart disease 

prediction, a two-stage hybrid feature selection strategy was employed. This approach combines 

Mutual Information (MI), a filter method, with Recursive Feature Elimination (RFE), a wrapper 

technique. Given the dataset’s size—over one million records with 13 clinical features—some 

variables were either redundant or carried minimal relevance to the target outcome. Including such 

attributes could dilute the predictive power and increase the complexity of neural network models. By 

isolating only the most informative features, this method enhances the model’s efficiency while 

minimizing the risk of overfitting. It also simplifies the training process, making the architecture more 

scalable and clinically interpretable. 

Mutual Information (MI): Mutual Information measures the degree to which a feature X shares 

information with the target variable Y. In essence, it captures the reduction in uncertainty about Y 

provided by knowing X. Features with higher MI scores exert a stronger influence on classification 

outcomes, allowing for a data-driven ranking that guides initial feature selection. This lays a solid 

foundation before RFE fine-tunes the final feature subset based on model performance. 

 
Where: 

• p(x,y) is the joint probability distribution of feature X and label Y, 

• p(x) and p(y)are the marginal distributions. 

Features with higher mutual information scores are more relevant to the prediction of heart disease. 

Recursive Feature Elimination (RFE): Recursive Feature Elimination (RFE) is a strategic 

method used in feature selection, particularly valued for its systematic, backward elimination 

approach. Rather than arbitrarily removing variables, RFE begins with the complete set of features and 

incrementally drops the least influential one at each step. This is determined through internal model 

evaluations, often relying on algorithms such as linear regressors or decision trees that inherently 

provide feature importance scores. With each iteration, the model is retrained, and features are 

reviewed, gradually enhancing in on those with the highest predictive value. This refined subset not 

only boosts the model's accuracy but also improves its generalization and interpretability by stripping 

away redundant or noisy inputs. 

Table 2: Mutual Information Scores 

thal 0.205419 

number_of_major_vessels 0.161478 

chest 0.152844 
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exercise_induced_angina 0.152259 

slope 0.114614 

sex 0.106728 

oldpeak 0.098231 

resting_electrocardiographic_results 0.079917 

maximum_heart_rate_achieved 0.78251 

age 0.041763 

fasting_blood_sugar 0.036786 

serum_cholestrol 0.010595 

resting_blood_pressure 0.008857 

 

Final Selected Features after MI + RFE: 

 ['thal', 'number_of_major_vessels', 'chest', 'exercise_induced_angina', 'slope', 'oldpeak', 

'resting_electrocardiographic_results'] 

 

D. Multilayer Perceptron (MLP): 

The Multilayer Perceptron (MLP) is a foundational deep learning architecture well-suited for 

capturing non-linear relationships within medical data. In this study, it is applied to a binary 

classification problem: predicting whether a patient is at risk of heart disease (labeled as 1) or not 

(labeled as 0). The model begins by taking in a 13-dimensional input vector x∈R13 , representing 

clinical features such as age, blood pressure, cholesterol levels, and more. These inputs are passed 

through one or more hidden layers. Within each hidden layer, every neuron calculates a weighted sum 

of the inputs, adds a bias term, and then applies a non-linear activation function—commonly a ReLU 

or sigmoid function—to introduce complexity into the model’s decision-making process. This is 

expressed by the formula: 

a = ReLU(W1x+b1) 

 

Here, W1 is the weight matrix connecting the input layer to the hidden layer, and b1 is the bias 

vector. ReLU is the activation function defined as ReLU(z) = max(0, z). This step introduces non-

linearity into the model, enabling it to learn more complex patterns than linear models. The output 

from the hidden layer, a, is then passed to the output layer, which consists of a single neuron since the 

task is binary classification. The output layer performs another linear transformation followed by the 

sigmoid activation function, which squashes the result into a probability between 0 and 1. This is given 

by the formula: 

𝑦 ̂= σ(W2a+b2) 

 

Here, W2 and b2 are the weights and biases from the hidden layer to the output layer, and 

σ(z)= 
1

1+𝑒−𝑧
 is the sigmoid function. The output 𝑦̂ represents the predicted probability that the given 

patient has heart disease. To train the model, we compare the predicted output 𝑦̂ with the actual label 

y ∈{0,1}using the binary cross-entropy loss function, defined as: 

L = -[ylog(𝑦̂) + (1 − 𝑦) log(1 − 𝑦̂)] 
 

The loss function serves as a measure of how far off the model's predictions are from the actual 

target values. The core objective during training is to reduce this error as much as possible by 

minimizing the loss across the dataset. To achieve this, optimization techniques—most commonly 

gradient descent are employed. This method updates the model's parameters, typically weights (W) 

and bias (b), by moving them step-by-step in the direction that reduces the loss. The weights are 

adjusted by calculating the gradient (or slope) of the loss function and shifting the parameters in the 

opposite direction of this gradient. The general rule for updating weights can be expressed as: 

W ← W – η . 
∂L

∂W
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Here, η is the learning rate that controls the step size of the update. 

The MLP modifies its weights and biases over several forward and backward propagation epochs 

to identify patterns in the data that differentiate individuals with and without heart disease. After 

training, the model can make accurate predictions and generalize to new, unknown patient data, which 

helps healthcare settings with early diagnosis and prevention. 

 

E. Convolutional Neural Networks (CNNs): 

CNNs are a class of deep learning models traditionally used for image and sequence data. Still, 

it has been increasingly adapted for structured tabular data where local interactions between features 

may be relevant. In this study, a one-dimensional CNN is employed to predict heart disease using a 

dataset containing one million instances, each with 13 clinical features and a binary target variable 

indicating the presence (1) or absence (0) of heart disease. To apply CNNs to tabular data, the input 

feature vector for each patient is reshaped from a flat 13-dimensional vector into a 1D array of shape 

13×1. This transformation allows the model to apply 1D convolutional filters to capture local patterns 

and feature combinations that may not be evident in traditional linear models. 

The convolutional operation at each position i is defined as: 

𝑧𝑖(1)= σ ( ∑ 𝑤𝑗
𝑘−1
𝑗=0 .𝑥𝑖+𝑗+b) 

where x is the input vector, k is the kernel size, wj represents the weights of the filter, b is the 

bias term, and σ is the activation function, typically the Rectified Linear Unit (ReLU), defined as: 

ReLU(z)=max(0,z) 

This is followed by a max pooling layer that reduces the dimensionality of the feature maps, 

preserving the most significant values: 

a(1) = max(z(1)
i ,z

(1)
i+1,...,z

(1)
i+m) 

The pooled output is flattened and passed through one or more fully connected dense layers, 

allowing the model to learn global representations. The final layer uses a sigmoid activation function 

to produce a probability score indicating the likelihood of heart disease: 

 
Model performance is evaluated using the binary cross-entropy loss function, defined as: 

 
Table 3: Baseline Performance of Deep Learning Models 

Algorithms 

 

Accuracy Precision Sensitivity Specificity F1-Score 

Multilayer Perceptron 

(MLP) 

0.8990 0.8906 0.8799 0.9142 0.8852 

Convolution Neural 

Network (CNN) 

0.8913 0.8677 0.8901 0.8922 0.8788 

MLP + CNN 

(Ensemble) 

0.9071 0.8953 0.8990 0.9092 0.8971 

F. Ensemble Model: Multilayer Perceptron and Convolutional Neural Network 

To enhance both the accuracy and robustness of heart disease prediction, this study introduces an 

ensemble framework that integrates two complementary deep learning models: the Multilayer 

Perceptron (MLP) and the Convolutional Neural Network (CNN). Each model brings unique strengths 

to the table—MLP is particularly adept at capturing global relationships across all input features, while 

CNN excels at recognizing localized patterns and spatial hierarchies within subsets of the data. By 

combining these two architectures, the ensemble helps mitigate the limitations of individual models, 

reducing both bias and variance and resulting in more reliable predictions. In this work, we adopt a 

soft voting strategy to merge the outputs. Both MLP and CNN are trained independently using the 

same dataset, and rather than selecting a majority class, their probability outputs are averaged to form 

the final prediction. This approach leverages the strengths of each model, producing a more balanced 
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and accurate classification, especially valuable in clinical settings where prediction precision is critical. 

Specifically, let 𝑦̂ MLP and 𝑦̂ CNN be the output probabilities produced by the MLP and CNN models, 

respectively. The ensemble prediction  is calculated using the following equation: 

 
where α∈[0,1] is a tunable parameter representing the weight assigned to the MLP model. In this 

study, we use α=0.5 to assign equal weight to both models, ensuring balanced contribution. 

After obtaining the ensemble probability score, a threshold of 0.5 is applied to convert it into a 

binary class label. The final model is evaluated using standard metrics such as accuracy, precision, 

recall, specificity, and F1-score. Experimental results show that the ensemble model consistently 

outperforms the individual models in all evaluation metrics. This validates the hypothesis that MLP 

and CNN learn complementary information from the dataset, and their combination provides a more 

comprehensive decision-making system for heart disease prediction. 

Algorithm 1: Ensemble of MLP and CNN 

 
Table 4: Performance after Feature Selection 

Algorithms Accuracy Precision Sensitivity Specificity F1-Score 

MLP (with selected 

features) 

0.9062 0.8979 0.8910 0.9125 0.8944 

CNN (with selected 

features) 

0.9004 0.8821 0.8953 0.9022 0.8886 

MLP + CNN 

(Ensemble with 

selected features) 

0.9130 0.9066 0.9017 0.9172 0.9041 

 

G. Stratified K-Fold Cross-Validation: 

Stratified K-Fold Cross-Validation is an enhanced version of the traditional K-Fold method, 

designed to maintain the original class proportions within each fold. This is especially important for 

medical prediction tasks like heart disease diagnosis, where class imbalance—more negative cases 
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than positive ones, for instance—can skew performance metrics if not properly addressed. In standard 

K-Fold cross-validation, the dataset is split into k equal parts. The model is trained on k−1 folds and 

tested on the remaining one, repeating the process k times so that each fold serves as the test set once. 

However, this approach doesn’t guarantee balanced class representation in each fold. Stratified K-Fold 

solves this issue by ensuring that each fold reflects the same class distribution as the full dataset. For 

this study, we employed Stratified K-Fold Cross-Validation with k=5. This method allowed us to 

evaluate model performance more reliably, maintaining consistent proportions of heart disease and 

non-disease cases across all training and validation sets—a crucial factor in the clinical accuracy and 

fairness of predictive models. 

For a performance metric M, the average performance over k folds is: 

 
Where: 

• k = number of folds 

• Mi = metric value (e.g., accuracy) from the ith fold 

This average 𝑀̅ gives a robust estimate of how well the model will generalize. 

 

Table 5: Performance of MLP & CNN after Cross Validation 

Algorithms Accuracy Precision Sensitivity Specificity F1-

Score 

MLP with 

selected features + 

CV 

0.8990 0.8906 0.8799 0.9142 0.8852 

CNN with 

selected features + 

CV 

0.8913 0.8677 0.8901 0.8922 0.8788 

MLP + CNN 

(Ensemble) with 

selected features + 

CV 

0.9120 0.9025 0.9091 0.9134 0.9058 

 

H. Bayesian Optimization for Deep Neural Model Tuning: 

In order to further improve the performance of our deep learning models, we used Bayesian 

Optimization as a common hyperparameter optimization technique on all three architectures (MLP, 

CNN and its ensemble the MLP + CNN network). Bayesian Optimization (BO) is a method based on 

probabilistic modelling that provides a formal framework for efficient hyperparameter optimization, 

which involves learning from previous evaluations indicated in the prior point and using a surrogate 

model, typically a Gaussian process, to indicate the next hyperparameter point most likely to result in 

better performance. Unlike grid or random search, which can be computationally expensive and 

inefficient in high-dimensional spaces, Bayesian Optimization evaluates fewer configurations but 

achieves higher-quality results. For each model, the objective was to minimize the binary cross-entropy 

loss on the validation set by optimizing the selection of hyperparameters. 

 Applied Hyperparameters: 

• MLP: Number of hidden layers, number of neurons per layer, learning rate, dropout rate, and 

batch size. 

• CNN: Number and size of filters, pooling size, learning rate, activation function, dropout rate. 

• MLP + CNN (Ensemble): Combined predictions from individually tuned models using a soft 

voting mechanism with optimized ensemble weights (α) via Bayesian search. 

The optimization was performed using a 5-fold Stratified Cross-Validation loop, ensuring balanced 

class representation. Each iteration of the Bayesian process trained the model using different 

hyperparameter settings and evaluated the mean validation performance to guide the search space. 
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Here, x∗ represents the optimal hyperparameter configuration selected from the search space 

𝑋, which includes parameters such as learning rate, number of hidden layers, neurons per layer, 

dropout rate, and batch size for MLP; and filter size, number of filters, pooling strategy, and activation 

function for CNN. The function Acq(x∣D1:t) known as the acquisition function, guides the selection of 

the next best  hyperparameter set to evaluate by balancing exploration (trying new values) and 

exploitation (refining known good values). This is based on the historical set of evaluations 

where each xi is a previously tested configuration and f(xi)f(x_i)f(xi) is its 

performance (such as validation accuracy or loss). 

 

With 13 clinical characteristics and a 1-million case heart disease dataset, Bayesian 

optimization effectively explores the vast hyperparameter space to find configurations that improve 

classification performance and generalization. This eliminates the unpredictability of naive sampling 

and the computational expense of thorough grid search. The method greatly enhanced important 

measures when used separately on CNN and MLP. To further improve the diagnostic capabilities of 

the ensemble model, we also tuned the weight parameter α in the soft voting combination using 

Bayesian Optimization. As a result, this optimization technique is essential for optimizing model 

performance and guaranteeing accurate cardiovascular disease prediction from complex medical data. 

 

Table 6: Performance of Optimized MLP & CNN  

Algorithms Accuracy Precision Sensitivity Specificity F1-

Score 

Optimized MLP with 

selected feature + CV 

0.9145 0.9072 0.9015 0.9186 0.9043 

Optimized CNN with 

selected feature + CV 

0.9110 0.8924 0.9103 0.9122 0.9013 

Optimized MLP + 

CNN (Ensemble) with 

selected feature + CV 

0.9294 0.9227 0.9270 0.9311 0.9248 

The study evaluated MLP, CNN, and their ensemble across four stages: baseline, feature 

selection, cross-validation, and optimization. Initially, MLP outperformed CNN slightly, with 89.90% 

accuracy versus 89.13%, and higher precision and specificity (Table 3). The CNN showed better 

sensitivity, indicating a stronger ability to detect positive cases. After feature selection (Table 4), all 

models improved. The ensemble achieved 91.30% accuracy and an F1-score of 90.41%, highlighting 

the benefit of reducing irrelevant features. Cross-validation (Table 5) confirmed the stability of results, 

with the ensemble model achieving 91.20% accuracy and 90.58% F1-score, ensuring reliability across 

different data splits. With Bayesian optimization (Table 6), performance peaked. The optimized 

ensemble model reached 92.94% accuracy, 92.70% sensitivity, and an F1-score of 92.48%, 

outperforming individual models. These results demonstrate that combining MLP and CNN with 

feature selection, cross-validation, and tuning significantly enhances heart disease prediction in large-

scale clinical data. 

 

IV. Conclusion 

This research highlights the potential of deep learning especially Multilayer Perceptron (MLP) and 

Convolutional Neural Network (CNN) models in successfully predicting cardiovascular disease using 

extensive clinical datasets. By utilizing a structured four-phase approach that incorporated initial 

assessment, hybrid feature selection, stratified k-fold cross-validation, and Bayesian hyperparameter 

optimization, the study achieved consistent performance improvements at each phase. The final 

ensemble model, which effectively combines the strengths of MLP and CNN frameworks, produced 

impressive outcomes: 92.94% accuracy, 92.27% precision, and an F1-score of 92.48%. These results 
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exceeded those of the standalone models, reinforcing the advantages of merging neural networks with 

advanced feature engineering and methodical optimization strategies. Looking to the future, 

subsequent versions of this research could gain from including temporal patient records, real-time data 

from wearable health monitoring devices, and explainable AI methodologies. Such improvements 

would not only enhance interpretability and applicability in real-world scenarios but also support the 

integration of these models into live clinical decision-making tools. Broadening the dataset to 

encompass multimodal sources and evaluating across diverse demographic groups would further 

improve the model's generalizability and clinical relevance. 
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