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Abstract  

Cardiovascular disease (CVD) encompasses various heart and blood vessel disorders such as 

coronary artery disease, heart failure, and arrhythmias. As a leading cause of mortality globally, early 

and accurate diagnosis is essential to improve survival rates and ensure timely treatment. Machine 

learning and deep learning models have shown promise in enhancing prediction accuracy, yet 

challenges remain in optimizing performance and reducing classification errors. To address this, a 

novel heart disease prediction model is proposed using a Stacked Ensemble Learning approach with 

a Fuzzy Convolutional Neural Network (Fuzzy CNN) as the meta-classifier. Initially, data 

preprocessing is performed, including handling missing values, normalization, and categorical 

encoding. The dataset is balanced with equal representation of both classes—disease and no disease. 

Recursive Feature Elimination (RFE) is applied to select the most relevant features for improving 

model generalization and reducing complexity. The framework employs an Improved Multi-Layer 

Perceptron (MLP)and an Improved Deep Belief Network (DBN) as base learners. Their outputs are 

aggregated and passed to a Fuzzy CNN, which integrates these predictions using a fuzzy-weighted 

voting scheme to generate the final classification. This combination effectively captures both linear 

and non-linear patterns in the data, enhancing diagnostic accuracy. Experimental evaluations show 

that the proposed model outperforms traditional approaches in terms of accuracy, precision, recall, 

F1-score, and specificity.  The results confirm the efficiency of the proposed stacked ensemble 

model in improving CVD diagnosis. 
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1. Introduction 

Cardiovascular Disease (CVD) remains one of the leading causes of death worldwide, 

accounting for an estimated 17.9 million lives annually, which represents 32% of all global deaths, 

according to the World Health Organization (WHO, 2021). These conditions, including coronary 

artery disease, arrhythmias, and heart failure, are often preventable or manageable if detected early. 

Early and accurate diagnosis plays a pivotal role in reducing morbidity and mortality, improving 

patient outcomes, and minimizing the burden on healthcare systems.Recent advances in machine 

learning (ML) and deep learning (DL) techniques have revolutionized the field of medical 

diagnostics, offering automated, scalable, and highly accurate systems for disease classification. ML 

algorithms such as Decision Trees, Support Vector Machines (SVM), Random Forests, and Naive 

Bayes have been extensively used for heart disease prediction, while DL models like Convolutional 

Neural Networks (CNNs), Deep Belief Networks (DBNs), and Multi-Layer Perceptrons (MLPs) 

have shown superior performance due to their ability to model complex, non-linear patterns in data 

[1]. 

However, single models often struggle to generalize well across diverse clinical datasets due 

to overfitting, limited interpretability, and sensitivity to data imbalance and noise. To overcome these 

challenges, ensemble learning techniques have emerged as a promising approach. Ensemble 

methods, particularly stacked ensemble learning, combine multiple base learners and integrate their 

predictions through a meta-classifier, thereby enhancing overall robustness and prediction accuracy 

[2].Moreover, traditional DL models treat the aggregation of base learners rigidly, often ignoring the 
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inherent uncertainty and vagueness in medical data. This shortcoming can be mitigated by 

incorporating fuzzy logic, which enables reasoning with imprecise inputs and allows for better 

handling of clinical ambiguity. Fuzzy CNNs, which integrate fuzzy systems with deep learning 

architectures, offer an advanced solution by combining the strengths of fuzzy inference systems and 

CNNs [3]. 

While several deep learning approaches have been proposed for heart disease prediction, 

limitations remain in terms of performance, interpretability, and efficiency. For instance, an end-to-

end attention-based deep neural model named DeepRisk [4] was developed to assess CVD risk, but it 

struggled to maintain high diagnostic accuracy across diverse clinical datasets. Similarly, a hybrid 

model combining Deep Belief Networks (DBN) with the Cuckoo Search Algorithm (CSA) [5] aimed 

to optimize cardiac disease prediction, yet integrating large-scale patient data with bio-inspired 

algorithms did not yield significant performance improvements. Another advanced model, the 

Optimal Scrutiny Boosted Graph Convolutional LSTM (O-SBGC-LSTM) [6], was designed to 

predict coronary heart disease risk in diabetic patients. Although it achieved moderate gains in 

accuracy, it failed to strike a balance between prediction efficiency and low time complexity. 

These limitations highlight the need for a more robust, accurate, and efficient predictive 

framework that can effectively model complex clinical patterns while maintaining generalizability. 

The proposed Stacked Ensemble Learning model with a Fuzzy CNN meta-classifier addresses these 

challenges by combining the strengths of improved deep learning architectures with fuzzy logic to 

enhance diagnostic performance for CVD prediction. 

Experimental results confirm that the proposed method significantly improves diagnostic 

performance across key metrics such as accuracy, precision, recall, F1-score, and specificity, 

outperforming traditional and standalone deep learning models. This highlights the potential of the 

proposed stacked ensemble model with Fuzzy CNN as a reliable tool for early and accurate CVD 

prediction in clinical practice 

 

2. Related works  

Karthik and Uthra [7] proposed a 2-Tier Stacking Ensemble Classifier aimed at improving 

disease classification performance. The architecture combines multiple base classifiers in the first 

tier and aggregates their predictions using a meta-classifier in the second tier. The proposed method 

demonstrated superior results on various benchmark datasets, confirming the efficacy of ensemble 

learning in healthcare diagnostics. The model’s modular structure makes it adaptable for integrating 

deep learning and fuzzy-based techniques for more complex disease prediction tasks.Chugh et al. [8] 

introduced a Hybrid Multi-Model Fuzzy Ensemble approach specifically for CVD detection. Their 

framework incorporates fuzzy logic to handle the vagueness and imprecision in clinical features and 

combines predictions from several models using ensemble voting. The fuzzy-enhanced ensemble 

significantly improved the sensitivity and specificity of CVD detection, validating the role of fuzzy 

systems in medical decision-making where input data may be noisy or uncertain. 

To exploit the spatial feature extraction capabilities of deep learning, Bukhari et al. [9] 

presented Stacked Convolutional Neural Network (CNN) architecture optimized using the Levy 

Flight-based Grasshopper Optimization Algorithm (LF-GOA). Their hybrid framework was applied 

to structured health datasets and achieved impressive prediction accuracy. The integration of 

evolutionary optimization with CNNs allowed the model to fine-tune hyperparameters for improved 

generalization on imbalanced CVD datasets .In a related study, Jain et al. [10] developed an 

Optimized Levy Flight CNN Model tailored for large-scale heart disease prediction. This work 

focused on big data applications and addressed overfitting through regularization techniques and 

hyperparameter tuning. Their framework outperformed traditional CNNs, demonstrating that 

optimization-based deep models are effective in managing complex healthcare datasets. Rustam et al. 

[11] further explored the role of CNNs in ensemble learning by incorporating CNN-generated deep 

features into traditional machine learning models for CVD classification. Their results revealed that 

CNN features, when used as input to ensemble classifiers like Gradient Boosting and Random 
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Forest, significantly enhance classification performance. This study bridges the gap between deep 

and conventional learning, supporting the design of hybrid models for structured data . 

Raj et al. [12] proposed a novel stack-based ensemble classifier combining Random Forest, 

Gradient Boosting, and Support Vector Machine (RF-GB-SVM) to detect heart disease. While the 

stacking model showed improved classification performance, it lacked an effective feature selection 

mechanism, limiting interpretability and model optimization for clinical use.Venkatesh et al. [13] 

developed an automatic diagnostic model using swarm intelligence techniques to detect and classify 

cardiovascular diseases based on clinical features and severity levels. Although promising, the model 

was not scalable to large datasets and lacked robustness in identifying diverse cardiovascular 

conditions. 

Sreekumari et al. [14] introduced an ensemble voting method for heart disease prediction by 

analyzing various risk factors. Despite the ensemble approach enhancing performance, the absence 

of a sophisticated feature selection process reduced the model’s ability to generalize and accurately 

predict disease across heterogeneous datasets. Duyar et al. [15] implemented a one-dimensional 

convolutional neural network (1D-CNN) model integrated with explainable artificial intelligence 

(XAI) and gut microbiota data to detect cardiovascular diseases. However, the model showed 

limitations in handling large-scale data, and its performance could not be scaled effectively due to 

computational constraints. Babu et al. [16] designed a cloud-based framework (CBF) using machine 

learning algorithms for monitoring health metrics and predicting cardiovascular diseases. While 

offering real-time processing and deployment benefits, the system did not significantly contribute to 

deeper analytical insights or medical decision support, highlighting the need for advanced model 

integration. 

 

3. Methodology 

 3.1 Data acquisition  

In the proposed SEL-FCNN Model, data acquisition is the fundamental step in cardiovascular 

disease risk prediction. It refers to the process of collecting, and analyzing data from the BNG 

Statlog Heart Disease Dataset. This dataset contains necessary information for cardiovascular disease 

prediction. It comprises 14 features and 10,00, 000 instances. The detailed descriptions of the 

features are shown in table1.  

Table 1: attribute description 

S.NO Attributes Description 

1 Age  Patient age in years 

2 sex   Gender (Male : 1; Female : 0)  

3 chest  chest pain type 

Value 1: typical angina 

Value 2: atypical angina 

Value 3: non-anginal pain 

Value 4: asymptomatic 

4 resting_blood_pressure 1-women, 2-men 

5 serum_cholestoral Serum cholesterol in mg/dl (Numeric) 

6 fasting_blood_sugar  Blood sugar levels on fasting > 120 

mg/dl  

1 : true  

0 : false  

7 resting_electrocardiographic_results 

 

Result of electrocardiogram while at 

rest with 3 distinct values 

0 : Normal  

1: having ST-T wave abnormality  

2: showing probable or definite left 

ventricular hypertrophyby Estes' 

criteria   
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8 maximum_heart_rate_achieved Maximum heart rate achieved 

(Numeric) 

9  exercise_induced_angina Exercise-induced angina (1 = yes; 0 = 

no) 

10 oldpeak ST depression induced by exercise 

relative to rest 

11 slope Slope of the peak exercise ST 

segment 

12 number_of_major_vessels Number of major vessels (0–3) 

colored by fluoroscopy 

13 thal results of nuclear stress test 

 (3 = normal; 6 = fixed defect; 7 = 

reversable defect) 

14 class Present, absent 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Architecture of Proposed SEL-FCNN Model 

 

3.2 Data Preprocessing 

Data preprocessing is carried out to ensure the dataset is clean, consistent, and suitable for the 

learning algorithms. Initially, missing values are handled using mean imputation for numerical 

features and mode imputation for categorical features. Outliers are detected and treated using the Z-

score method, where any data point with aZ-score above 3 or below 3 is considered an outlier and 

either removed or replaced. Subsequently, categorical variables are encoded to numerical form using 

One-Hot Encoding for nominal features and Ordinal Encoding for ordered categories. To ensure 

uniformity in feature scales, numerical attributes are normalized using Min-Max Scaling, defined by 

the formula 

𝑋𝑆𝑐𝑎𝑙𝑒𝑑 = 
𝑋− 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (1) 

Where Xis the original feature value, Xmin and Xmax are the minimum and maximum values 

of the feature, respectively. This normalization bounds the values within the [0, 1] range, which is 

essential for neural network based models. The dataset used is already balanced, containing an 

approximately equal distribution of both classes—‘disease’ and ‘no disease’—ensuring unbiased 

learning and improved classification performance. 

 

3.3 Feature Selection: 

Recursive Feature Elimination (RFE) is used as the feature selection method in this study due 

to its ability to identify the most relevant features for heart disease prediction. RFE works by 

recursively removing the least important features based on model weight or importance scores until 
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the optimal set is selected. It helps reduce overfitting, improves accuracy, and enhances model 

interpretability. For linear models, feature importance is calculated as: 

Importance(fi)=∣wi∣ (2) 

Where wi is the weight of feature fi. RFE ensures that only the most informative clinical 

parameters are used for classification. The selected Features are Age, Chest Pain Type,Resting Blood 

Pressure , Serum Cholesterol, Max Heart Rate Achieved , ST Depression , Exercise Induced Angina , 

Number of Major Vessels , and Thalassemia 

 

3.4 Disease classification using Stacked Ensemble learning with Fuzzy CNN  

A Stacked Ensemble method is an ensemble machine learning algorithm that combines 

multiple models to improve predictive performance. The stacking utilizes the multiple base models, 

such as the Improved MLP and DBN classifier model that are trained on the training data samples 

and classify the samples into disease presence or absence. Each model learns different patterns and 

produces its own prediction outcomes independently. Once classification is obtained from all base 

models, they are combined using an aggregation method called a meta-learner, which in this case is a 

CNN with a fuzzy weighted voting concept. This process produces the final classification output, 

such as whether a disease is present or absent. 

The stacked ensemble classifier uses the selected optimal features from the training dataset 

{ 𝛽𝑑𝑚, 𝑌} as input to the base classifiers. In this training set, 𝛽𝑑𝑚represents the input training 

samples, and 𝑌  represents the output labels for the stacked ensemble classification methods. 

 

 
Fig 2 Structure of stacked ensemble classifier  

  

  3.4.1 Improved Multilayer perceptron classifier  

Disease classification is performed using an improved Multilayer Perceptron (MLP) classifier 

with selected features and training data samples βdi\beta_{d_i}βdi. This fully connected feed-

forward neural network comprises an input layer, multiple hidden layers, and an output layer. Each 

neuron computes a weighted sum of inputs, adds a bias, and applies an activation function. The input 

layer receives selected features, where each feature is associated with weights 𝛼𝑗 and a bias 𝑔 

𝑄(𝑡) = [∑ 𝛽𝑑𝑗 ∗
𝑚
𝑗=1 𝛼𝑗] + 𝑔    (3) 

To evaluate similarity between test and training samples, the Generalized Tversky Index is 

used: 

𝐵 =
𝛽𝑑𝑗∩ 𝛽𝑑𝑡

𝑢(𝛽𝑑𝑗∆ 𝛽𝑑𝑡)+  𝑣(𝛽𝑑𝑗∩ 𝛽𝑑𝑡)
   (4) 

Where u, v = 1. The similarity score B is passed through a Sigmoid Activation Function to 

produce classification output: 

𝐹 =
1

1+exp(−𝐵)
  (5) 
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 𝐹 = {
1  ; 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡
0 ;   𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝑎𝑏𝑠𝑒𝑛𝑡

  (6) 

The classification error is calculated as: 

  

𝑒 =
1

2
(𝑌 − 𝑍(𝑡))

2
    (7) 

 To minimize error, weights are updated using the Whale Optimization Algorithm (WOA), 

which mimics the bubble-net hunting strategy of whales. Each whale represents a weight vector, and 

fitness is evaluated using: 

𝑓 = argmin 𝑒  (8) 

 

Whale position update during encircling behavior is given by 

𝑃𝑤(𝑖 + 1) = 𝑃𝑏𝑒𝑠𝑡(𝑖) − 𝐴. 𝐵   (9) 

𝐵 = |𝜑. 𝑃𝑏𝑒𝑠𝑡(𝑖) − 𝑃𝑝(𝑖)| (10) 

 Where, 𝑃𝑤(𝑖 + 1)  denotes an updated position of whale, 𝑃𝑏𝑒𝑠𝑡(𝑖)indicates a current best 

position, 𝑃𝑝(𝑖)  denotes a position vector of the prey, 𝐴 𝑎𝑛𝑑 𝐵 represents a coefficient vector. 

Therefore, the coefficient vector is expressed as follows, 

𝐴 =  (2𝑘 − 1)𝑟   (11) 

 𝜑 = 2𝑘   (12) 

Where ‘𝑟’ denotes a number linearly reduced from 2 to 0 and ‘𝑘’ indicates a random vector 

[0, 1].  The spiral bubble-net feeding strategy updates positions using: 

𝑃𝑤(𝑖 + 1) = 𝐷
′𝑒𝑚𝑛 cos(2𝜋𝑞) + 𝑃𝑏𝑒𝑠𝑡(𝑖)  (13) 

𝐷 = |𝑃𝑏𝑒𝑠𝑡(𝑖) − 𝑃𝑤(𝑖)|  (14) 

 Where, 𝑃𝑤(𝑖 + 1)indicates a updated position of whale, 𝐷represents an updated distance 

among whale current position ‘𝑃𝑤(𝑖)’ and best solution ‘𝑃𝑏𝑒𝑠𝑡(𝑖)’, ‘𝑚’ is a constant [0, 1] used to 

describing the structure of the logarithmic curve, Exponential function ‘e’ is the base of natural 

logarithms, ‘𝑛’ is the random number ranges are [-1, 1]. Finally, searching the prey behavior is 

randomly executed along with the position.   

𝑃𝑤(𝑖 + 1) = 𝑃𝑟𝑎𝑛𝑑(𝑖) − 𝐴. 𝐵(15) 

𝐵 = |𝜑. 𝑃𝑟𝑎𝑛𝑑(𝑖) − 𝑃𝑤(𝑖)|(16) 

The above processes are repeated until convergence. Finally, the optimized weights minimize 

the classification error, improving the predictive performance of the MLP classifier. 

 

3.4.2Improved Deep Belief Network 

The proposed Deep Belief Network (DBN) is a fully connected, feed-forward architecture 

comprising an input layer, multiple hidden layers, and an output layer. Training involves two phases: 

unsupervised layer-wise pre-training followed by supervised fine-tuning using Bregman Divergence-

based Swallow Swarm Optimization (BD-SSO). 

Let the training set be {D, Y} where D={𝛽𝑓𝑡1
, 𝛽𝑓𝑡2

, … , 𝛽𝑓𝑡𝑛
}represents the input data and Y is the 

output label (disease presence/absence). In the hidden layer, neuron activation is computed as: 

𝐻 = ∑ 𝛽𝑓𝑡𝑖
𝑛
𝑖=1 ∗ 𝜑𝑣_ℎ + 𝐵    (17) 

Where  is the weight between visible and hidden layers, and B is the bias. A fuzzy-based 

Multi-Criteria Decision Analysis (MCDA) evaluates the data against predefined thresholds𝜑𝑣_ℎ. 

Fuzzy rules classify disease presence or absence: 

𝑅1: 𝒊𝒇(𝛽𝑓𝑣𝑖 = 𝑃𝐶ℎ)𝑡ℎ𝑒𝑛 𝑐𝑙𝑎𝑠𝑠 𝐶𝑖 ∈ 0 𝑖. 𝑒 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑎𝑏𝑠𝑒𝑛𝑐𝑒  (18) 

𝑅2: 𝒊𝒇(𝛽𝑓𝑣𝑖 > 𝑃𝐶ℎ)𝑡ℎ𝑒𝑛 𝑐𝑙𝑎𝑠𝑠 𝐶𝑖 ∈ 1  𝑖. 𝑒 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒  (19) 

The fuzzy output is passed to a Gaussian Radial Basis Function (RBF) kernel to measure 

similarity between training and testing samples: 

𝑅𝐾 = exp [−0.5 ∗
‖𝛽𝑓𝑡

−𝛽𝑓𝑑𝑡
‖
2

𝑑2
]          (20) 
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Whered is the deviation. The RBF output feeds into the Maxout activation function: 

𝐴 = {
1;  max𝑅𝐾
0;   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (21) 

In the fine-tuning phase, BD-SSO optimizes the weights to minimize classification error. 

Each swallow in the swarm represents a weight vector: 

𝜑 = 𝜑1, 𝜑2, … . 𝜑𝑚  (22) 

Fitness is calculated using 

𝜃𝑓 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸   (23) 

The error rate is computed as follows, 

𝐸 =
1

𝑛
(𝑌𝑎𝑐 − 𝑌𝑝𝑟𝑒𝑑)

2
    (24) 

Based on their fitness values, the particles are categorized into different roles: explorers, 

wandering (aimless) particles, local leaders, and the global (head) leader. The Explorer’s velocity is 

updated as: 

𝑉𝐸(𝑖 + 1) = 𝑉𝐸(𝑖) + 𝑉𝑇(25) 

Where, 𝑉𝐸(𝑖) denotes a current velocity of the Explorer particles, 𝑉𝑇  denotes a total velocity 

which is expressed as follows, 

𝑉𝑇 = 𝑉ℎ𝑙(𝑖+1) + 𝑉𝑙𝑙(𝑖+1)  (26) 

Where,  

𝑉ℎ𝑙(𝑖+1) = 𝑉ℎ𝑙(𝑡) + 𝑟1|𝑥𝑏𝑒𝑠𝑡(𝐸) − 𝑥𝑖(𝐸)| + 𝑟2|𝑉ℎ𝑙 (𝑡) − 𝑥𝑖(𝐸)|  (27) 

𝑉𝑙𝑙(𝑖+1) = 𝑉𝑙𝑙(𝑡) + 𝑟3|𝑥𝑏𝑒𝑠𝑡(𝐸) − 𝑥𝑖(𝐸)| + 𝑟4|𝑉𝑙𝑙 − 𝑥𝑖(𝐸)|  (28) 

Here 𝑟1,𝑟2, 𝑟3, 𝑟4∈(0,1) are random values, and ∣⋅∣ denotes Bregman divergence between the 

best solution and current position. The process repeats until convergence, and the final output is 

obtained through the output layer, ensuring accurate disease classification. 

 

3.4.3 Fuzzy Convolutional Neural Network based Classification   

In the proposed model, a Fuzzy Convolutional Neural Network (Fuzzy CNN) acts as a meta-

learner to integrate outputs from two base classifiers improved MLP and improved DBN for final 

heart disease prediction. This combination captures both linear and non-linear data patterns, 

improving classification accuracy and robustness. 

The output from base classifiers is aggregated as: 

𝑌 = ∑ 𝑧𝑘
2
𝑘=1      (29) 

Where𝑧𝑘 is the output of the 𝑘𝑡ℎ base classifier. The combined result CE is passed into the 

CNN, which includes input, hidden (convolution, max-pooling, fully connected), and output layers.A 

fuzzy-weighted voting technique is applied to the classifier outputs. Votes are assigned as: 

Vk → ck(BC)  (30) 

 
Fig 3: Schematic Structure of CNN 

 

Where, Vk  denotes a votes assigned to the classification results ‘ck’ of the base classifier 

‘BC’.The corresponding weight for each class is computed by: 
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𝑊 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑜𝑡𝑒𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑦 class

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑠
 (31) 

Next, triangular fuzzy membership functions are used in the max-pooling layer to process 

weights: 

𝜇𝑠(𝑊) =

{
 
 

 
 
  0                 𝑊 < 𝑎 𝑜𝑟 𝑊 ≥ 𝑐
𝑊−𝑎

𝑏−𝑎
                 𝑎 < 𝑊 ≤ 𝑏

𝑊−𝑎

𝑏−𝑎
                     𝑏 < 𝑊 < 𝑐

   (32) 

Where a, b, and c define the triangle’s shape. The fully connected layer selects the final class 

based on the highest fuzzy membership value exceeding a predefined threshold T: 

𝑌 = argmax  𝜇𝑠(𝑊)   𝑖. 𝑒  𝜇𝑠(𝑊) > 𝑇  (33) 

This fuzzy logic integration enables more accurate final classification by evaluating class 

relevance based on combined weighted votes and fuzzy membership strength 

. 

// Algorithm 1:Disease classification using Stacked Ensemble learning with 

Fuzzy CNN 

Input: selected optimal features ‘𝛽𝑓1
, 𝛽𝑓2

, … , 𝛽𝑓𝑜
’, data samples 𝛽𝑑 =

𝛽𝑑1, 𝛽𝑑2, … , 𝛽𝑑𝑚 

Output: Increase classification accuracy     

Begin 

1. Collect the optimal features 𝛽𝑓1
, 𝛽𝑓2

, … , 𝛽𝑓𝑜
 

2.    Construct ‘base  classifiers ‘ 

// Improved MLP 

3.    Obtain the neuron activity at input layer  ‘𝑄(𝑡)’  
4. For each training data with testing disease data –[hidden layers] 

5.    Measure Tversky index similarity measure  ‘𝐵’   

6.      Apply sigmoid activation function ‘𝐹’ 

7.         If (𝐹 = 1 ) then 

8.         classified as disease present  

9.       else 

10.         classified as disease absent  

11.        End if 

12.      For each results  

13.      Measure the error rate ‘𝑒’ 
14.       Update the weight ‘∇𝛼𝑡+1’   
15.        Find minimum error by identifying optimal weight  using WOA 
16.        Obtain the final classification results with minimum error at the 

output layer 

17. End for  

18. End for  

// Improved DBN 

19. Number of selected features 𝛽𝑓1
, 𝛽𝑓2

, … , 𝛽𝑓𝑜
with the training data 𝛽𝑑 =

𝛽𝑑1, 𝛽𝑑2, … , 𝛽𝑑𝑚taken at the input layer 

20.    For each data𝛽𝑑𝑖 –[hidden layer] 

21.          Assign weight ‘𝜑𝑣_ℎ’  and add bias ‘𝐵’   

22.       end for 

23.           Perform multicriteria analysis with fuzzy rules  

24.      For each training data with testing disease data  

25.           Measure relationship using kernel function  

26.    kernel output is given to activation function  
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27. If (𝐴 = 1 ) then 

28.      classified as disease present  

29. else 

30.       classified as disease absent  

31. End if 

32.   For each classified results  

33.      Measure the error rate ‘𝐸’ 
34.       Update the weight ‘∇𝜑𝑣_ℎ’  using BD-SSO algorithm  
35.     End for 
36.     Obtain the final classification results with minimum error at the output 

layer 

37. End for 

// Stacking Ensemble Classification with Fuzzy CNN 

38. Collect combined base classifier results ‘𝐶𝐸’ ‘input layer 

39.    For each class ck(BC)--- convolutional layer 

40. Assign the votes  ‘Vk’ 

41. Assign the weights based on vote counts  

42. End For  

43.    For each weighted class  

44.         Compute membership grade using (61)   --- maxpooling layer 

45.        End for  

46. For each membership value--- fully connected layer 

47. Assign threshold  

48.       if  ( 𝜇𝑠(𝑊) > 𝑇) then 

49.          Obtain the final accurate classification results 

50. End if 

51.    End for 

52. Return (disease present and absent classification)  --- output layer 

End  

 

4. Experimental Evaluation 

4.1 Performance Analysis of Accuracy  

It refers to the proportion of patient records that are correctly predicted as low, moderate, or 

high risk out of the total number of records. It is calculated using the following formula: 

𝐴 =  [
𝑡𝑡𝑟+𝑡𝑛𝑒

𝑡𝑡𝑟+𝑡𝑛𝑒+𝑓𝑝𝑣+𝑓𝑛𝑣
] ∗ 100                           (34) 

 

Table 2: Comparative analysis of accuracy 

Number 

of  data 

samples 

 Accuracy (%) 

Proposed 

SEL-FCNN 

DeepRisk[1] DBN+CSA 

[2] 

O-SBGC-

LSTM [3] 

10000 98.3 91.5 93 94.5 

20000 98.22 91.22 93.22 94.23 

30000 98.1 91.05 93.45 94.85 

40000 97.89 90.56 92.33 94.36 

50000 97.78 90.78 92.56 93.85 

60000 98.56 90.56 92.6 94.96 

70000 98.23 91.33 93.32 95.78 

80000 98.56 92.56 94.02 95.22 

90000 98.12 91.63 93.65 95.89 

100000 97.8 92.74 94.05 95.5 
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4.2 Performance Analysis of Precision  

Precision is a performance metric used to evaluate the accuracy of a model in identifying 

heart disease prediction. It is calculated by dividing the number of true positive predictions by 

including both true positives and false positives. The formula for precision is given below: 

𝑃𝑟 = [
𝑡𝑡𝑟

𝑡𝑡𝑟+𝑓𝑝𝑣
] ∗ 100   (35) 

 

Table 3:Comparison ofprecision 

Number of  

data 

samples 

Precision (%) 

Proposed SEL-

FCNN 

DeepRisk[1] DBN+CSA 

[2] 

O-SBGC-

LSTM [3] 

10000 98.88 94.94 95.50 96.61 

20000 98.65 94.23 95.42 96.5 

30000 98.45 94.21 95.36 95.74 

40000 98.39 93.56 95.41 96.23 

50000 98.25 93.44 95.33 95.85 

60000 97.56 93.65 95.65 96.02 

70000 98.45 94.12 96.05 96.87 

80000 97.89 93.56 95.56 96.22 

90000 98.92 94.63 95.23 96.56 

100000 98.47 94.23 95.96 96.83 

  

4.3Performance analysis of recall   

 Recall is an important performance metric in heart disease risk prediction, as it measures the 

model’s ability to correctly identify patients’ risk. It is computed using the following formula,  

𝑅𝑙 = [
𝑡𝑡𝑟

𝑡𝑡𝑟+𝑓𝑛𝑣
] ∗ 100   (36) 

 

Table 4: Comparison of recall   

Number of  

data 

samples 

Recall (%) 

Proposed 

SEL-FCNN 

DeepRisk[1] DBN+CSA 

[2] 

O-SBGC-

LSTM [3] 

10000 99.21 95.48 96.59 97.15 

20000 99.18 95.36 96.45 97.05 

30000 99.12 95.25 96.42 97.02 

40000 99.05 95.11 96.35 97.11 

50000 99.12 95.05 96.32 97.36 

60000 98.45 95.23 96.28 97.45 

70000 99.05 95.36 96.12 96.89 

80000 98.45 95.22 96.41 97.10 

90000 99.06 95.11 96.52 97.23 

100000 98.72 95.54 96.69 97.45 

 

4.4 Performance Analysis ofF-Measure:  

It also called as F1 score is measured as the mean of precision as well as recall. A higher 

value indicates a better trade-off between precision and recall.It is measured as follows,  

𝑓 − 𝑚 = [2 ∗
𝑃𝑟 ∗ 𝑅𝑙

𝑃𝑟 +𝑅𝑙
] ∗ 100(37) 
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Table 5:Comparison of F-measure 

Number of  

data 

samples 

F-measure (%) 

Proposed SEL-

FCNN 

DeepRisk[1] DBN+CSA 

[2] 

O-

SBGC-

LSTM 

[3] 

10000 99.04 95.20 96.04 96.87 

20000 98.91 94.79 95.93 96.77 

30000 98.78 94.72 95.88 96.37 

40000 98.71 94.32 95.87 96.66 

50000 98.68 94.23 95.82 96.59 

60000 98.00 94.43 95.96 96.72 

70000 98.74 94.73 96.08 96.88 

80000 98.16 94.38 95.98 96.68 

90000 98.99 94.86 95.87 96.89 

100000 98.59 94.88 96.32 97.13 

 

4.5 Performance analysis of Specificity: 

It measures the model that identifies patients who have heart disease risk levels. The 

corresponding mathematical formulation is provided below. 

𝑆𝑃 = [
𝑡𝑛𝑒

𝑡𝑛𝑒+𝑓𝑝𝑣
] ∗ 100    (38) 

Table 6: comparison of Specificity 

Number of  

data 

samples 

Specificity (%) 

Proposed 

SEL-

FCNN 

DeepRisk[1] DBN+CSA 

[2] 

O-SBGC-

LSTM [3] 

10000 90.90 60.86 66.66 75 

20000 92.36 65.89 68.56 78.56 

30000 91.26 70.05 72.65 80.23 

40000 93.85 73.63 75.62 83.65 

50000 91.25 76.45 78.23 85.74 

60000 94.45 80.05 82.65 87.05 

70000 93.65 82.47 84.05 88.96 

80000 93.78 83.65 85.45 87.56 

90000 94.55 82.89 86.67 88.45 

100000 94.47 82.79 86.44 88.37 

 

5. Conclusion  

Heart disease remains a major leading cause of mortality worldwide, highlighting the need 

for early and accurate detection to improve patient outcomes. This paper introduces the SEL-FCNN 

model which is designed for heart disease risk prediction with big data. The approach incorporates 

various stages to enhance accuracy of risk prediction with minimal time consumption. The pre-

processing component of risk prediction significantly reduces both computational time, thereby 

speeding up the cardiovascular disease (CVD) prediction process. Moreover, the feature extraction 

and optimal feature selection step improved the accuracy of risk prediction with minimal complexity. 

The proposed SEL-FCNN model, which integrates Stacked Ensemble Learning with a Fine-tuned 

Convolutional Neural Network and Temporal LSTM, demonstrated superior performance over 

traditional deep learning models across multiple metrics including accuracy, precision, recall, F1-

score, specificity, and prediction time. Through effective preprocessing and optimal feature 
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selection, the model achieved reduced computational complexity and improved risk prediction 

outcomes. The results underscore the effectiveness of ensemble and hybrid deep learning approaches 

in handling large-scale cardiovascular datasets. Future work will focus on expanding this framework 

by incorporating multimodal health data - such as clinical imaging, electronic health records, and 

IoT-based physiological signals to further enhance the predictive power and clinical applicability of 

heart disease risk assessment models. 
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