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Abstract 

Accurate prediction of cardiovascular disease (CVD) is essential for early diagnosis and 

improved clinical care. This research presents a comprehensive framework that combines advanced 

machine learning with explainable AI (XAI) techniques to enhance both predictive accuracy and 

interpretability. A large dataset of 1 million patient records with 14 health-related attributes from 

OpenML was preprocessed and used to train multiple models, including Logistic Regression, Random 

Forest, XGBoost, and Multilayer Perceptron. Among these, XGBoost achieved the best performance 

with an accuracy of 0.90, precision of 0.91, recall of 0.88, F1-score of 0.895, and ROC-AUC of 0.94. 

To ensure transparency in clinical decision support, SHAP (SHapley Additive exPlanations) was 

integrated with the XGBoost model for both global and patient-specific feature attributions. Global 

SHAP analysis revealed that serum cholesterol, resting blood pressure, age, ST depression (oldpeak), 

and exercise-induced angina were the most influential predictors, consistent with established clinical 

risk factors. Local SHAP explanations provided individualized risk profiles, demonstrating how each 

feature contributed to a patient’s predicted outcome. This dual focus on predictive performance and 

interpretability delivers a robust and trustworthy decision-support system, aiding clinicians in risk 

stratification, personalized treatment planning, and improved patient outcomes. 
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1. INTRODUCTION 

Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality 

worldwide, accounting for an estimated 17.9 million deaths annually, representing 32% of all global 

deaths (World Health Organization, 2021). Early detection of risk factors such as hypertension, high 

cholesterol, diabetes, smoking, and obesity plays a crucial role in preventing severe outcomes, 

including heart attacks and strokes. Traditional risk assessment methods rely heavily on clinical 

expertise and standard scoring systems; however, these approaches often struggle to capture the 

complex, nonlinear interactions between multiple health indicators. This limitation has accelerated the 

adoption of data-driven predictive approaches such as machine learning (ML) and deep learning (DL) 

to improve accuracy in cardiovascular risk prediction. 

Machine learning techniques have shown promising results in modeling large-scale healthcare 

datasets. Models such as Logistic Regression (LR), Random Forests (RF), and ensemble methods like 

Extreme Gradient Boosting (XGBoost) are widely used for classification tasks in medical diagnostics. 

XGBoost, in particular, has demonstrated superior performance in handling structured tabular data due 

to its scalability, robustness to missing values, and built-in regularization. Studies by Weng et al. [5] 

and Al’Aref et al. [1] have shown that ML models can outperform conventional statistical methods in 

predicting cardiovascular outcomes, offering clinicians valuable decision-support tools. 

Deep learning approaches, such as Multilayer Perceptrons (MLPs) and Convolutional Neural 

Networks (CNNs), extend these capabilities by capturing more complex patterns in patient data. These 

models have been successfully applied in cardiovascular imaging, electrocardiogram (ECG) signal 

analysis, and integrated clinical datasets, providing enhanced predictive accuracy [3]. However, their 

“black-box” nature has raised concerns regarding transparency and interpretability, which are essential 

in clinical decision-making. To address these limitations, explainable artificial intelligence (XAI) has 

emerged as a vital research area. XAI techniques aim to provide human-interpretable explanations of 

model predictions, enabling clinicians to understand, validate, and trust the outcomes. Among them, 
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SHAP (SHapley Additive exPlanations) has gained prominence due to its strong theoretical foundation 

in cooperative game theory and its ability to deliver both global and patient-specific feature 

attributions. SHAP ensures local accuracy by decomposing individual predictions into additive feature 

contributions, while global interpretations rank features based on their average importance across 

patients. Recent studies [2][4] demonstrate that integrating SHAP with high-performing models like 

XGBoost not only improves transparency but also aligns predictions with clinically meaningful risk 

factors, such as cholesterol levels, blood pressure, and age. 

Thus, combining robust predictive models with SHAP-based explanations offers a powerful 

and trustworthy decision-support framework. This approach holds the potential to enhance risk 

stratification, personalize treatment strategies, and ultimately improve patient outcomes in 

cardiovascular care. The paper is structured as follows. Section 2 reviews related work on machine 

learning and deep learning for cardiovascular disease prediction. Section 3 describes the dataset, 

preprocessing, model development, and evaluation metrics. Section 4 presents the results and discusses 

the performance of the models, with a particular focus on XGBoost. Section 5 integrates SHAP with 

XGBoost to provide global and patient-specific explanations. Section 6 concludes with key findings 

and future research directions. 

 

II. LITERATURE REVIEW 

Tamarappoo et al. [6] conducted a prospective study that integrated machine learning with 

circulating and imaging biomarkers for predicting cardiac events. Their framework successfully 

combined cardiac CT-derived metrics with blood-based biomarkers, improving risk stratification over 

traditional approaches. Importantly, the study emphasized patient-specific interpretability, allowing 

clinicians to understand individualized cardiac risk better. El-Sofany, Bouallegue, and Abd El-Latif 

[7] proposed a heart disease prediction system using machine learning algorithms enhanced with 

explainable AI methods. Their approach demonstrated high predictive accuracy and transparency, with 

SHAP-based explanations clarifying the role of key features such as cholesterol and blood pressure. 

The study underscored how interpretability strengthens clinician trust in AI-assisted predictions. 

Bilal et al. [8] developed an explainable AI-driven system for precision cardiovascular disease 

forecasting using a large-scale dataset. By applying SHAP and LIME, the model provided transparent 

risk explanations while maintaining strong predictive performance. Their system illustrated how 

explainability can improve reliability in real-world clinical applications. Gulhane and Sajana [9] 

introduced an ensemble learning framework integrated with explainable AI for heart disease diagnosis. 

They optimized models like XGBoost and AdaBoost to achieve high classification accuracy while 

SHAP visualizations explained feature contributions. The combination of performance and 

interpretability was found particularly useful for clinical decision support. Krzysiak, An, and Chen 

[10] proposed XCardio-Twin, an explainable digital twin framework for monitoring cardiovascular 

health. This system enables continuous analysis of patient status and provides interpretable outputs for 

clinicians. Their study highlighted the role of digital twin technologies in enhancing patient monitoring 

with transparent AI tools. Das et al. [11] developed XAI–reduct, a method that combines 

dimensionality reduction with explainable AI for heart disease classification. The approach preserved 

accuracy despite reducing features, as SHAP-derived importance ensured only the most informative 

variables were retained. This work demonstrated how explainability can guide feature engineering in 

high-dimensional datasets. 

Sapra and Sapra [12] proposed an interpretable approach to cardiovascular disease detection using 

SHAP-based explanations. Their model highlighted the most critical clinical features influencing 

predictions, offering clear, patient-specific insights. Such transparency makes the framework practical 

for use in clinical environments where accountability is crucial. Bye et al. [13] investigated sex-

specific cardiovascular disease risk prediction using machine learning and explainable AI. Their 

findings showed improved accuracy when stratifying risk by sex, and XAI methods identified sex-

related differences in risk factors. The study addressed an important gap in personalized medicine by 

tailoring predictions to biological differences. Rezk et al. [14] proposed hybrid ensemble models using 

LightGBM and XGBoost, augmented with explainable AI. Their approach significantly improved 
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predictive accuracy while SHAP and LIME explained critical predictors like blood pressure and 

cholesterol. The study demonstrated how ensemble methods can achieve both robustness and 

interpretability. 

Fu et al. [15] built an ML model guided by SHAP to assess the cardiovascular risk of patients 

exposed to volatile organic compounds alongside demographic factors. The model identified key 

environmental and clinical drivers of risk, with SHAP values quantifying their effects. This highlighted 

the importance of environmental exposures in CVD prediction. Luo et al. [16] applied XGBoost with 

SHAP to predict one-year readmission in elderly heart failure patients. Their model achieved high 

accuracy and identified top predictors such as NT-proBNP and hemoglobin. SHAP visualizations 

provided clinicians with clear interpretations of patient-specific risk profiles. Zhang et al. [17] 

compared multiple ML models for predicting cardiovascular disease in diabetic patients and found 

XGBoost to be the most effective. SHAP interpretation revealed dominant predictors, including age, 

blood sugar, and cholesterol. The study demonstrated the potential of combining ML with XAI in 

managing high-risk diabetic populations. 

Srinivasu et al. [18] proposed an interpretable diagnostic framework for predicting heart disease 

and stroke. Their model incorporated best practices such as feature selection and resampling while 

using SHAP and LIME for explanations. The framework ensured that predictions remained transparent 

and clinically reliable. Haupt et al. [19] conducted a systematic review of explainable AI applications 

in cardiovascular imaging. The review covered various XAI methods and assessed their strengths, 

limitations, and adoption barriers in clinical imaging. The study emphasized the importance of 

explanation quality for clinical trust and integration. Ashika et al. [20] explored stacked ensemble 

learning combined with explainable AI for digital health applications in heart disease prediction. Their 

findings showed that XGBoost consistently outperformed other models within the ensemble. XAI 

methods clarified key features influencing predictions, making the system more interpretable and 

clinically viable. 

 

III. METHODOLOGY 

 
Figure 1: Proposed Methodology 

1. Data Preprocessing 

The dataset comprises a total of 1 million records and includes 14 attributes, each detailing 

various health-related factors and characteristics of individuals from openml.org. Among the patients, 

44.41% have been diagnosed with heart disease, while 55.59% have not. This fairly balanced class 

distribution minimizes significant bias toward either category. Such stability is beneficial for training 
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machine learning models, as it lowers the chances of the model overfitting to the majority class and 

improves the reliability of predictions for both positive and negative results. 

Table 1: Dataset Description 

No Attribute Description Data 

Type 

Domain 

1 Age Patient age (years) Numerical 29 – 77 

2 Sex Gender Binary 0 = Female, 1 = Male 

3 Chp Chest pain type Nominal 1 = Typical angina, 2 = Atypical angina, 

3 = Non-anginal pain, 4 = 

Asymptomatic 

4 Bp Resting blood pressure Numerical 94 – 200 mmHg 

5 Sch Serum cholesterol Numerical 126 – 564 mg/dl 

6 Fbs Fasting blood sugar >120 

mg/dL 

Binary 0 = False, 1 = True 

7 Ecg Resting 

electrocardiographic 

result 

Nominal 0 = Normal, 1 = ST-T wave 

abnormality, 2 = Left ventricular 

hypertrophy 

8 Mhrt Maximum heart rate Numerical 71 – 200 bpm 

9 Exian Exercise induced angina Binary 0 = No, 1 = Yes 

10 Opk Old peak (ST depression) Numerical 0.0 – 6.2 

11 Slope Slope of ST segment Nominal 1 = Upsloping, 2 = Flat, 3 = 

Downsloping 

12 Vessel Number of major vessels Nominal 0 – 3 

13 Thal Thalassemia defect type Nominal 3 = Normal, 6 = Fixed defect, 7 = 

Reversible defect 

14 Class Heart disease Binary 0 = Absence, 1 = Presence 

A. Handle Missing Values, Outliers, and Duplicates 

The dataset is first examined for completeness and consistency. Missing values are treated 

using the K-Nearest Neighbors (KNN) imputation algorithm, where the missing entry of a feature is 

estimated based on the values of its k closest data points. Formally, the imputed value for a missing 

feature xi is given by: 

 
Where xij represents the value of the feature for the jth nearest neighbor. Outliers are detected 

using the Interquartile Range (IQR) method, where the lower bound (LB) and upper bound (UB) are 

computed as: 

LB = Q1−1.5×IQR, UB = Q3+1.5×IQR 

Here, Q1 and Q3 denote the first and third quartiles, and IQR=Q3−Q1. Values outside this 

range are treated as outliers and either capped or removed. Duplicate records are identified through 

row-level comparison across all attributes and eliminated to prevent redundancy during training. 

B. Normalization of Continuous Features 

To ensure uniform scaling across continuous variables such as age, cholesterol, and resting 

blood pressure, Z-score normalization is applied. This method centres the data around zero mean and 

unit variance, thereby preventing large-scale features from dominating the learning process. The 

transformation is expressed as: 

 
Where x is the original feature value, μ is the mean of the feature, and σ is the standard 

deviation. Standardization ensures that all features contribute equally to the model’s learning. 

C. Encode Categorical Variables  
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Categorical attributes such as sex, chest pain type, and thalassemia are encoded to facilitate machine 

learning processing. One-Hot Encoding is applied, which generates binary indicator variables for each 

category. For a categorical variable with n distinct categories, one-hot encoding produces an n-

dimensional binary vector: 

x = [0, 0, 1, 0,…,0] 

Where the index of ‘1’ corresponds to the observed category. This transformation avoids 

introducing artificial ordinal relationships and ensures categorical variables are represented in a format 

suitable for predictive modeling. 

 

2. Data Splitting 

Data splitting divides the dataset into a training set and a test set to evaluate model performance. 

Typically, 80% of the data is used for training, allowing the model to learn patterns, while 20% is 

reserved for testing to assess accuracy and generalization. This approach helps prevent overfitting and 

ensures reliable predictions on unseen data. 

 

3. Model Building  

A. Logistic Regression (Baseline, Interpretable) 

Logistic Regression is a widely used statistical model for binary classification problems. It 

predicts the probability of a target variable belonging to a particular class based on input features. Its 

key advantage is interpretability, as the effect of each feature on the prediction can be directly 

understood through its coefficients. The logistic regression model uses the sigmoid function to map 

linear combinations of features to probabilities 

 
Where β0 is the intercept, β1,…, βn  are feature coefficients, and x1,…, xn are input features. 

Logistic Regression serves as a strong baseline for classification tasks due to its simplicity and clarity. 

B. Random Forest (Non-linear, Robust) 

Random Forest is an ensemble learning method that combine multiple decision trees to improve 

predictive performance. Random Forest builds a large number of decision trees using bootstrapped 

samples and averages their predictions, reducing variance and avoiding overfitting. The general 

prediction for Random Forest can be expressed as: 

 
Where ht(X) is the prediction from the t-th tree, and T is the total number of trees. These models 

are non-linear, robust to noise, and effective for handling high-dimensional datasets. 

C. XGBoost (Extreme Gradient Boosting) 

XGBoost is a powerful gradient boosting algorithm widely used for structured data prediction 

tasks. It builds an ensemble of decision trees sequentially, where each new tree corrects the errors of 

the previous trees. The model optimizes a regularized objective function combining a loss term and a 

complexity penalty to prevent overfitting: 

 
Where l is the loss function (e.g., logistic loss for classification), fk represents the k-th tree, and 

Ω(fk) is a regularization term for tree complexity. XGBoost is robust, handles missing values 

automatically, and captures non-linear relationships efficiently, making it suitable for clinical 

prediction tasks. Its speed and scalability allow training on large datasets while maintaining high 

accuracy. 

D. Deep Neural Network (MLP) (To Capture Complex Relations) 
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A Deep Neural Network, particularly a Multilayer Perceptron (MLP), is designed to capture 

complex, non-linear relationships between input features and the target variable. It consists of multiple 

layers of interconnected neurons, each applying a weighted sum and activation function to its inputs. 

For a single neuron, the output is calculated as: 

 
Where wi are weights, xi are inputs, b is the bias, and f is an activation function such as ReLU 

or sigmoid. MLPs are highly flexible and can model intricate patterns in large datasets, making them 

suitable for tasks where linear models fail to capture hidden complexities. 

4. Model Training & Evaluation 

During model training, different algorithms such as Logistic Regression (LR), Random Forest 

(RF), XGBoost (XGB), and Multilayer Perceptron (MLP) are trained on the training dataset. Their 

performance is then evaluated on the test set using standard metrics including Accuracy, Precision, 

Recall, F1-score, and ROC-AUC to assess classification effectiveness from multiple perspectives. 

Accuracy measures the overall correctness of predictions, precision evaluates the correctness of 

positive predictions, recall indicates the ability to identify all positive instances, F1-score balances 

precision and recall, and ROC-AUC quantifies the model’s discriminatory ability. Based on these 

metrics, the best-performing model(s) are selected for further analysis or deployment. 

Table 2: Performance Comparison of Models across Evaluation Metrics 

Model Accuracy Precision Recall F1-score ROC-AUC 

LR 0.82 0.83 0.80 0.815 0.89 

RF 0.88 0.87 0.85 0.86 0.92 

XGB 0.90 0.91 0.88 0.895 0.94 

MLP 0.89 0.90 0.87 0.885 0.93 

Based on the evaluation metrics, XGBoost (XGB) emerges as the best-performing model. It 

achieves the highest accuracy (0.90), precision (0.91), recall (0.88), F1-score (0.895), and ROC-AUC 

(0.94) among all models. Its ability to capture complex non-linear relationships, handle missing values, 

and prevent overfitting through regularization makes it particularly effective for clinical prediction 

tasks. XGBoost’s robustness and scalability make it the preferred choice for generating reliable 

predictions and supporting further analysis such as explainable AI and feature attribution. 

Table 3: Graphical Performance Comparison of LR, RF, XGB, and MLP Models 
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5. Explainability & Feature Attribution 

A. SHAP (Shapley values): global + local feature contributions 

In our heart-disease classifier, SHAP treats the model as a “game” in which each feature, like 

age, cholesterol, resting BP, etc., is a player that contributes to the final prediction. For any single 

patient, SHAP computes that patient’s prediction by averaging each feature’s marginal contribution 

over all possible feature combinations; mathematically, these are the classic Shapley values from 

cooperative game theory. Two properties make this attractive for clinicians: consistency and local 

accuracy (the sum of feature attributions plus a baseline equals the model’s output for that patient). In 

practice, we use a model-specific explainer for tree models (TreeSHAP) or an efficient kernel-based 

approximation for others. Global importance is then simply the mean absolute SHAP value per feature 

across all patients. Local explanations, on the other hand, show for one patient which features 

contributed to an increase or decrease in risk, and by how much, relative to a baseline “average 

patient.” This framework underpins the paper’s “patient-specific feature attribution” layer and the 

global ranking that informs clinical dashboards.  
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Figure 2: SHAP global importance graph computed from a 100-record sample 

This plot shows which features most strongly drive model predictions on average useful for 

identifying the dominant cardiovascular risk factors in your cohort. 

 
Figure 3: SHAP local importance bar graph for a single patient 

6. Integration of SHAP with XGBoost 

To enhance the interpretability of the best-performing model, XGBoost, we integrate SHAP to 

provide both global and patient-specific feature attributions. XGBoost achieved the highest predictive 

performance with an accuracy of 0.90, precision 0.91, recall 0.88, F1-score 0.895, and ROC-AUC 

0.94, making it the most reliable candidate for explainability analysis. 

SHAP assigns each feature a contribution value to a prediction based on cooperative game theory. For 

a feature iii, the SHAP value is calculated as: 

 
Where: 

• F is the full set of features, 

• S is a subset of features excluding iii, 

• fx(S) is the model prediction using only features in SSS. 

The SHAP framework guarantees two key properties: 

1. Local Accuracy: The sum of SHAP values plus the baseline prediction equals the model’s 

output for a given patient. 
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2. Consistency: if a model change increases the contribution of a feature, its SHAP value will not 

decrease. 

By applying TreeSHAP (optimized for gradient boosting models), global importance is obtained 

by averaging absolute SHAP values across all patients, highlighting dominant predictors such as serum 

cholesterol, resting blood pressure, age, and exercise-induced angina. Local shows how individual 

feature values shift a patient’s risk upward or downward relative to an “average patient.” This 

integration enables XGBoost to not only deliver state-of-the-art predictive performance but also 

provide transparent, clinically meaningful insights at both cohort and patient levels, thereby improving 

trust and aiding clinical decision-making. 

 

IV. CONCLUSION 

This study presented a comprehensive framework for predicting cardiovascular disease by 

leveraging machine learning, deep learning, and explainable AI techniques. Using a large-scale dataset 

of one million records with 14 health-related attributes, several predictive models Logistic Regression 

(LR), Random Forest (RF), XGBoost, and Multilayer Perceptron were developed and evaluated. 

Among these, XGBoost demonstrated superior performance with an accuracy of 0.90, precision of 

0.91, recall of 0.88, F1-score of 0.895, and ROC-AUC of 0.94, establishing it as the best-performing 

model for this task. A key contribution of this research lies in its integration of SHAP with the 

XGBoost classifier. While predictive accuracy is essential, the ability to explain model outcomes 

transparently is equally critical in clinical applications. SHAP provided both global and patient-

specific feature attributions, revealing that serum cholesterol, resting blood pressure, age, ST 

depression (oldpeak), and exercise-induced angina were among the most influential predictors of 

cardiovascular disease. Furthermore, patient-level SHAP plots enabled clinicians to understand 

individualized risk contributions, thereby enhancing trust in the model’s decisions. Overall, this work 

highlights the dual importance of high predictive performance and interpretability in healthcare AI 

systems. By balancing these two aspects, the proposed framework not only delivers accurate 

predictions but also generates clinically meaningful insights, making it a valuable decision-support 

tool for risk stratification and personalized treatment planning in cardiovascular care. 

Future enhancements will focus on incorporating multimodal data (imaging, genomic, wearable 

sensors) for more comprehensive predictions, deploying the framework in real-time clinical settings 

integrated with electronic health records, and combining SHAP with advanced XAI methods for 

deeper interpretability. Additionally, exploring federated learning for privacy-preserving model 

training and validating outcomes with clinical experts will further improve transparency, reliability, 

and acceptance in healthcare practice. 
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