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Abstract 

Cardiovascular Disease (CVD) remains the leading global cause of mortality, necessitating the 

development of accurate, scalable, and early predictive diagnostic tools. This study presents CARDIO-

AI, a large-scale, exhaustive comparative analysis of three distinct paradigms of artificial intelligence 

for CVD prediction: classical machine learning (ML) models, advanced ensemble methods, and deep 

learning (DL) architectures. The analysis leveraged a substantial dataset of one million (10 lakh) 

patient instances with 13 critical clinical features to systematically train, optimize, and evaluate a 

diverse suite of 15 algorithms. The implemented methodologies included classical ML (Logistic 

Regression, Naive Bayes, K-Nearest Neighbors, Support Vector Machine, Decision Tree), ensemble 

methods (Random Forest, Gradient Boosting, AdaBoost, XGBoost, LightGBM, Bagging), and deep 

learning architectures (Multilayer Perceptron, Deep Neural Network). Performance was rigorously 

assessed using a stratified train-test split and 10-fold cross-validation, with metrics including accuracy, 

precision, recall, F1-score, and the Area under the ROC Curve (AUC-ROC). Findings indicate that 

while classical models provide strong baseline performance, tree-based ensemble methods, 

particularly Gradient Boosting, XGBoost, and LightGBM, demonstrated superior predictive power 

and robust generalization, outperforming both simpler models and deep neural networks on this 

structured tabular data. The CARDIO-AI framework successfully identifies the most efficacious 

algorithms, providing a data-driven foundation for deploying AI-powered clinical decision support 

systems to facilitate early intervention and improve patient outcomes in cardiovascular care. 

 

I. Introduction 

Cardiovascular Disease (CVD) encompasses a range of disorders affecting the heart and blood 

vessels, including coronary artery disease, heart failure, stroke, and hypertensive heart disease. For 

decades, it has remained the paramount global health challenge, standing as the leading cause of 

mortality worldwide according to the World Health Organization (WHO). This pervasive public health 

crisis is responsible for an estimated 17.9 million deaths annually, a figure that represents a profound 

human and economic burden on societies across both developed and developing nations. The insidious 

nature of CVD often allows it to progress silently, with many individuals remaining asymptomatic 

until a major adverse event, such as a myocardial infarction or stroke, occurs. Consequently, the 

development of robust strategies for early detection, accurate risk stratification, and proactive 

intervention is not merely a scientific pursuit but a critical imperative for modern healthcare systems. 

The traditional paradigm for CVD risk assessment has relied on a combination of clinical evaluation, 

physiological measurements (e.g., blood pressure, cholesterol levels), and standardized risk prediction 

engines like the Framingham Risk Score or the ASCVD (Atherosclerotic Cardiovascular Disease) Risk 

Estimator. While these tools have been instrumental in guiding clinical practice, they are often 

constrained by their inherent statistical limitations. They may struggle to capture the complex, non-

linear interactions between multifaceted risk factors—such as age, genetics, lifestyle, and 

comorbidities—leading to suboptimal predictive accuracy for certain patient subgroups. This 

limitation underscores an urgent need for more sophisticated, dynamic, and personalized predictive 

models that can leverage the full spectrum of available clinical data. 

The advent of artificial intelligence (AI) and machine learning (ML) has heralded a new era in 

data-driven medicine, offering unprecedented opportunities to revolutionize diagnostic and prognostic 

tasks. AI algorithms, with their capacity to learn intricate patterns from large, high-dimensional 
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datasets, present a powerful alternative to conventional statistical methods. The healthcare domain, 

rich with electronic health records (EHRs) and clinical data, is a fertile ground for applying these 

techniques. The promise of AI lies in its ability to synthesize diverse clinical features from basic 

demographics and lab results to more complex biomarkers into a holistic risk profile, potentially 

identifying at-risk individuals long before traditional methods would. However, the field of AI in 

medicine is not monolithic. It is characterized by a diverse and rapidly evolving ecosystem of 

algorithmic approaches, each with distinct strengths, weaknesses, and applicability. This diversity 

presents a significant challenge for clinicians and healthcare researchers: which AI paradigm is most 

effective for the specific task of CVD prediction? The choice of algorithm spans three primary 

paradigms. Classical Machine Learning models are prized for their interpretability, simplicity, and 

strong performance as baselines. Ensemble Learning methods are renowned for their high predictive 

accuracy on structured tabular data, achieved by combining multiple weak learners into a single robust 

and generalized model. In contrast, Deep Learning architectures are celebrated for their ability to 

automatically learn hierarchical feature representations, though their application to tabular clinical data 

is less established and often more computationally intensive compared to image or text data. 

While numerous studies have applied individual models or a small subset of these techniques 

to CVD prediction, the literature lacks a large-scale, exhaustive, and rigorous comparative analysis 

that systematically evaluates all three paradigms against each other on a common, massive dataset. 

Many existing studies are limited by smaller sample sizes, a narrower selection of algorithms, or 

insufficient hyperparameter tuning, making it difficult to draw definitive conclusions about the relative 

superiority of any approach. To address this critical gap, this study presents CARDIO-AI, a 

comprehensive framework for the prediction of cardiovascular disease. The primary objective of this 

research is to conduct a large-scale, empirical comparative analysis of 15 distinct algorithms spanning 

classical ML, ensemble methods, and deep learning. This study is distinguished by its use of a 

substantial dataset of one million patient instances, meticulous hyperparameter tuning for each model, 

and a rigorous evaluation protocol using a suite of five standard performance metrics (Accuracy, 

Precision, Recall, F1-Score, and AUC-ROC). Through this exhaustive approach, CARDIO-AI aims to 

identify the most efficacious and reliable AI-driven approach for CVD prediction. The findings of this 

study are intended to provide a data-driven foundation for the development of advanced clinical 

decision support systems (CDSS), ultimately facilitating earlier intervention, optimizing resource 

allocation, and improving patient outcomes in the ongoing fight against cardiovascular disease. 

 

II. Literature Review 

Here is a concise literature survey based on the 15 recent papers relevant to your research on 

cardiovascular disease (CVD) prediction using machine learning, ensemble methods, and deep 

learning. Each entry includes a brief overview highlighting the strengths and limitations of the 

respective study. 

Ali et al. [1] established strong supervised learning baselines for heart disease prediction, 

rigorously comparing classical classifiers across multiple metrics and offering a clean experimental 

setup that many later works build upon; however, their models offered limited clinical interpretability 

and did not demonstrate external validation at true population scale, leaving questions about 

deployment in heterogeneous hospitals. Tiwari et al. [2] advanced performance with an ensemble 

framework that consistently surpassed single learners and showed careful hyperparameter optimization 

and stability across folds; the added complexity raised inference costs and introduced sensitivity to 

tuning and feature drift, signaling a need for lighter, cost-aware ensembles for real-time screening. 

Li et al. [3] systematically reviewed deep learning on longitudinal EHR trajectories, clarifying 

when sequence models (RNNs, Transformers) outperform tabular baselines by leveraging temporal 

context; yet the review highlighted persistent gaps in handling missingness patterns, transfer across 

institutions, and temporal external validation, underscoring the need for standardized preprocessing 

pipelines and benchmark cohorts with well-documented shift. Amirahmadi et al. [4] mapped fairness 

risks in CVD prediction, showing that sex and ethnicity subgroups can face disparate error profiles 

even when global AUCs are high; their synthesis sharpened the community’s focus on bias 
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quantification, though concrete mitigation recipes (reweighing, counterfactual fairness, equalized odds 

constraints) were not comparatively validated on shared datasets, leaving a practical “how-to” gap for 

clinicians and data scientists. 

Pingitore et al. [5] demonstrated that ML can discover composite indicators for cardiac death 

in ischemic heart disease, integrating multi-domain variables into clinically plausible signatures that 

improved risk stratification; nonetheless, model calibration and external validation across 

geographically distinct centers remained limited, and decision-curve analyses were needed to translate 

gains into net clinical benefit. Li et al. [6] automated risk prediction workflows and showed 

improvements over traditional calculators through feature learning and model selection automation—

an important step toward scalable deployment; transparency lagged behind performance, and the study 

left open how to package explanations for clinicians and patients under strict time constraints. 

Ward et al. [7] trained and evaluated ML for ASCVD risk in a multi-ethnic cohort, a notable 

merit for representativeness and for showing incremental gains over guideline scores; however, under-

represented subgroups suffered wider confidence intervals and sometimes degraded calibration, 

reinforcing the need for subgroup-aware training, threshold optimization, and post-hoc recalibration 

before equitable adoption. Rahim et al. [8] provided a comprehensive review that connected classical 

ML, ensembles, and early DL applications to CVD detection, giving practitioners a broad map of 

algorithmic choices and features used; the review’s breadth came at the cost of unified experimental 

controls, and it called for head-to-head comparisons on harmonized datasets with common metrics 

beyond AUC, such as PPV at fixed sensitivity and decision-curve utility. 

Rajendran and Karthi [9] showed that entropy-based feature engineering paired with 

ensembling can raise accuracy while reducing redundancy—useful where feature costs and 

computation matter; still, evaluation on relatively small datasets limited confidence in cross-site 

generalization, emphasizing the need for replication on million-scale registries and robust temporal 

splits. Kim and Choi [10] used 1D CNNs on clinical features, extracting local interactions that 

improved discrimination with minimal manual engineering; performance dipped on heavily 

imbalanced cohorts and rare-event strata, suggesting that class-imbalance strategies (focal loss, cost-

sensitive learning, calibrated thresholding) and prevalence-aware calibration are pivotal for 

deployment. 

Patel and Shah [11] introduced a hybrid ensemble with integrated explainability, balancing 

accuracy with SHAP-style insights that clinicians can interrogate; yet explanation stability across shifts 

(time, site, assay changes) and runtime complexity during peak clinical hours remained open issues, 

pointing to the importance of caching explanations, model distillation, and selective re-training. Zhang 

and Li [12] proposed HXAI-ML, a hybrid explainable framework that married performance with 

interpretable sub modules and case-level rationales; while encouraging, the pipeline’s engineering 

footprint and compute requirements could challenge low-resource settings, highlighting the need for 

Pareto-efficient architectures that trade tiny drops in AUC for large gains in latency and energy use. 

Khan et al. [13] surveyed ML methods for heart disease diagnosis and distilled common pitfalls 

data leakage, non-reproducible preprocessing, and optimistic validation—that inflate reported 

performance; the review’s merit is a checklist for robust experimentation, but it stops short of releasing 

standardized baselines and open code, an omission that continues to slow reproducible progress. 

Barfungpa et al. [14] explored a hybrid deep–dense Aquila network, reporting robust accuracy through 

meta-heuristic-informed architecture design; the novelty is appealing, yet broader benchmarking 

against widely adopted gradient-boosting and tabular DL baselines was limited, leaving the practical 

advantage over XGBoost/LightGBM unclear. Hossain et al. [15] combined CNNs with BiLSTMs to 

capture both local feature patterns and temporal dependencies, a well-motivated architecture that 

improved discrimination; training proved resource-intensive, and external validation on large, multi-

center cohorts was missing, so the path to clinical readiness requires pruning, quantization, and 

prospective evaluation. 
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III. Methodology 

1. Dataset Preparation 

The heart disease dataset used in this study consists of 1,000,000 patient records with 13 

clinically relevant attributes. During preprocessing, records were examined for missing or inconsistent 

values. Less than 0.5% of the records contained incomplete information, which was removed to ensure 

data quality. For numerical variables such as age, blood pressure, cholesterol, maximum heart rate, 

and old peak, normalization using min–max scaling was applied to standardize ranges and prevent bias 

in distance-based algorithms. Categorical features (sex, chest pain type, ECG results, slope, vessel 

count, thalassemia) were encoded using one-hot encoding, while binary features (fasting blood sugar, 

exercise-induced angina, class label) were mapped to {0,1}. The target variable (Class) was defined 

as 1 = presence of heart disease and 0 = absence of heart disease.  

After preprocessing, the dataset contained balanced diagnostic information suitable for 

machine learning, ensemble, and deep learning models. 

Table 1: Dataset Description 

No Attribute Description Data 

Type 

Domain 

1 Age Patient age (years) Numerical 29 – 77 

2 Sex Gender Binary 0 = Female, 1 = Male 

3 Chp Chest pain type Nominal 1 = Typical angina, 2 = Atypical angina, 

3 = Non-anginal pain, 4 = 

Asymptomatic 

4 Bp Resting blood pressure Numerical 94 – 200 mmHg 

5 Sch Serum cholesterol Numerical 126 – 564 mg/dl 

6 Fbs Fasting blood sugar >120 

mg/dL 

Binary 0 = False, 1 = True 

7 Ecg Resting 

electrocardiographic 

result 

Nominal 0 = Normal, 1 = ST-T wave 

abnormality, 2 = Left ventricular 

hypertrophy 

8 Mhrt Maximum heart rate Numerical 71 – 200 bpm 

9 Exian Exercise induced angina Binary 0 = No, 1 = Yes 

10 Opk Old peak (ST depression) Numerical 0.0 – 6.2 

11 Slope Slope of ST segment Nominal 1 = Upsloping, 2 = Flat, 3 = 

Downsloping 

12 Vessel Number of major vessels Nominal 0 – 3 

13 Thal Thalassemia defect type Nominal 3 = Normal, 6 = Fixed defect, 7 = 

Reversible defect 

14 Class Heart disease Binary 0 = Absence, 1 = Presence 

2. Feature Selection 

All 13 attributes were retained in this study. Age and capture demographic details, while the 

remaining 11 clinical features (blood pressure, cholesterol, ECG results, maximum heart rate, old peak, 

etc.) provide vital diagnostic information for cardiovascular disease. Each feature contributes unique 

clinical value, and dropping any may reduce predictive strength. Experiments with different algorithms 

confirmed that using Sex all 13 features consistently gave better results than reduced subsets. Hence, 

no dimensionality reduction was applied, ensuring maximum diagnostic accuracy and reliability in the 

CARDIO-AI framework. 

3. Comparison of Machine Learning, Ensemble, and Deep Learning  

A. lassical Machine Learning Models:  

This subsection details the implementation, theoretical rationale, and specific considerations 

for the five classical machine learning algorithms employed in this study. These models serve as 

foundational benchmarks against which the more complex ensemble and deep learning approaches are 

compared. 

Logistic Regression (LR) 
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Logistic Regression was selected as a primary baseline model due to its simplicity, 

interpretability, and long-standing history in statistical modeling for binary classification tasks, 

including medical risk prediction. Unlike linear regression, LR models the probability that a given 

instance belongs to a particular class using the logistic sigmoid function, making it ideal for estimating 

the probability of CVD occurrence. The model was implemented using the LogisticRegression class 

from the Scikit-learn library. Given the large scale of the dataset (n=1,000,000), the solver was set to 

'saga', which is optimized for very large datasets and supports L1 (Lasso) and L2 (Ridge) 

regularization. 

Hyperparameter Tuning: 

The hyperparameter C (inverse of regularization strength) was tuned over a logarithmic scale 

([0.001, 0.01, 0.1, 1, 10, 100]) to find the optimal balance between preventing overfitting and 

maximizing predictive performance. L2 regularization was applied by default to penalize large 

coefficients and improve model generalization. 

Naive Bayes (NB) 

The Gaussian Naïve Bayes algorithm was implemented based on its efficiency and strong 

performance on datasets with independent features, even when this independence assumption is 

violated. It applies Bayes' theorem to calculate the posterior probability of a class (CVD presence) 

given the predictor features. Its computational efficiency makes it highly suitable for large-scale 

datasets. The GaussianNB class from Scikit-learn was used, which assumes that continuous features 

(like cholesterol level and age) follow a Gaussian (normal) distribution. 

Hyperparameter Tuning: 

The key hyperparameter for smoothing is var_smoothing. This parameter adds a small value 

to the variance of all features to stabilize the calculations and prevent probabilities from being zero for 

unseen data. This was tuned over a range of values (np.logspace(0, -9, num=100) to find the optimal 

level of smoothing for the dataset's feature distributions. 

K-Nearest Neighbors (KNN) 

The K-Nearest Neighbors algorithm is an instance-based, non-parametric method that classifies a data 

point based on the majority class among its 'k' most similar instances (neighbors) in the feature space. 

It was chosen for its simplicity and ability to learn complex, non-linear decision boundaries without a 

explicit model. The KNeighborsClassifier from Scikit-learn was employed. Due to the memory-

intensive nature of KNN (as it stores the entire training dataset), computational efficiency was a 

significant consideration during training and inference on the large-scale dataset. 

Hyperparameter Tuning: 

The most critical hyperparameter, n_neighbors, was tuned ([3, 5, 7, 9, 11, 13]). A small 'k' 

value can lead to a noisy, overfit model, while a large 'k' value can oversmooth the decision boundary 

and underfit. The weights parameter was also tuned; setting it to 'uniform' gives all neighbors equal 

weight, while 'distance' gives closer neighbors a greater influence on the classification. 

Support Vector Machine (SVM) 

Support Vector Machine was implemented for its effectiveness in high-dimensional spaces and 

its ability to define a complex, non-linear decision boundary through the use of kernel functions. The 

objective of an SVM is to find the optimal hyperplane that maximizes the margin between the two 

classes. The SVC (Support Vector Classification) class from Scikit-learn was used. The Radial Basis 

Function (RBF) kernel was primarily evaluated as it can model complex, non-linear relationships 

between clinical features and CVD risk. 

Hyperparameter Tuning: 

A critical hyperparameter search was conducted. The regularization parameter C was tuned 

([0.1, 1, 10, 100]) to control the trade-off between maximizing the margin and minimizing 

classification error. The gamma parameter for the RBF kernel, which defines the influence of a single 

training example, was also tuned (values: ['scale', 'auto']). A smaller gamma leads to a broader 

influence and a smoother decision boundary, while a larger gamma leads to a more complex, wiggly 

boundary. 

Decision Tree (DT) 



Journal of the Maharaja Sayajirao University of Baroda 
ISSN :0025-0422 

Volume-59, No.4 : 2025                                          110 

A Decision Tree classifier was implemented as a representative of intuitive, rule-based models 

that are highly interpretable. It learns a series of simple, hierarchical decision rules (e.g., if age > 55 

and cholesterol > 240 then high risk) inferred from the data features. This white-box model provides 

clear insight into the most discriminative features for CVD prediction. The DecisionTreeClassifier 

from Scikit-learn was utilized. 

Hyperparameter Tuning: 

Extensive tuning was essential to control the tree's propensity to overfit the training data. The 

max_depth parameter, which restricts how deep the tree can grow, was tuned ([3, 5, 10, None]). The 

min_samples_split parameter, which specifies the minimum number of samples required to split an 

internal node, was also tuned ([2, 5, 10]) to prevent the tree from creating leaves with very few samples. 

The criterion for measuring split quality (['gini', 'entropy']) was evaluated.  

B. Ensemble Learning Methods 

Ensemble methods combine multiple base estimators to build a single, more robust, and accurate 

model. They are particularly effective for complex tabular data like clinical datasets, as they can 

capture intricate non-linear relationships and interactions between features. This study implemented 

six prominent ensemble techniques. 

Random Forest (RF) 

Random Forest is a bagging (Bootstrap Aggregating) ensemble meta-algorithm that constructs 

a multitude of decision trees during training. Its key innovation is the introduction of feature 

randomness: when splitting a node, the search for the best split is limited to a random subset of features. 

This decorrelates the individual trees, leading to a superior ensemble model that is highly robust to 

overfitting. The RandomForestClassifier from Scikit-learn was employed. Its inherent parallelizability 

made it efficient to train on the large-scale dataset. 

Hyperparameter Tuning: 

Critical hyperparameters tuned included n_estimators ([100, 200, 500]), controlling the number 

of trees (more trees reduce variance but increase computation), and max_depth ([10, 30, 50, None]), 

controlling the complexity of each tree. min_samples_split was also tuned to prevent trees from 

learning overly specific patterns from very small sample sets. 

Gradient Boosting (GB) 

Gradient Boosting is a boosting technique that builds models sequentially. Each new model is 

trained to correct the errors made by the previous ones. It combines weak learners (typically shallow 

trees) into a single strong learner in a stage-wise fashion, optimizing an arbitrary differentiable loss 

function (e.g., log loss for classification). This study used Scikit-learn's GradientBoostingClassifier, 

which is a reliable implementation of the canonical algorithm. 

Hyperparameter Tuning: 

The learning rate (learning_rate in [0.01, 0.1, 0.2]), which scales the contribution of each tree, 

was tuned alongside n_estimators ([100, 200]). A low learning rate typically requires more trees. 

max_depth ([3, 5, 7]) was tuned to control the complexity of the individual weak learners. 

AdaBoost (AB) 

AdaBoost (Adaptive Boosting) was the first practical boosting algorithm. It works by fitting a 

sequence of weak learners (e.g., "stumps," which are single-split trees) on repeatedly modified versions 

of the data. The algorithm assigns higher weights to instances that were misclassified by previous 

learners, forcing the model to focus on hard-to-classify cases. The AdaBoostClassifier from Scikit-

learn was used. 

Hyperparameter Tuning: 

The primary hyperparameters tuned were n_estimators ([50, 100, 200]) and learning_rate 

([0.01, 0.1, 1.0]). A high learning rate increases the contribution of each classifier, which can lead to 

overfitting if the number of estimators is also high. 

XGBoost (XGB) 

XGBoost (Extreme Gradient Boosting) is an optimized distributed gradient boosting library 

designed to be highly efficient, flexible, and portable. It provides a parallel tree boosting algorithm 

that solves many data science problems quickly and accurately. Its key advantages include built-in 
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regularization (to control overfitting), efficient handling of missing values, and superior computational 

performance through hardware optimization. The XGBClassifier from the XGBoost library was 

utilized. 

Hyperparameter Tuning: 

A broad search was conducted. Key parameters included n_estimators ([100, 200]), max_depth 

([3, 6, 9]), learning_rate ([0.01, 0.1]), and subsample ([0.8, 1.0]), which controls the fraction of samples 

used for fitting each tree to prevent overfitting. 

LightGBM (LGBM) 

LightGBM (Light Gradient Boosting Machine) is a gradient boosting framework that uses tree-

based learning algorithms. It is designed for distributed computing and offers faster training speed and 

higher efficiency than XGBoost on large datasets. It grows trees leaf-wise (best-first) rather than level-

wise, which can often lead to lower loss and better accuracy, but may also overfit on small datasets. 

Given the massive scale of this study's dataset (1M instances), LGBM's efficiency was a significant 

advantage. The LGBMClassifier from the LightGBM library was used. 

 

Hyperparameter Tuning: 

Similar to XGBoost, n_estimators ([100, 200]), learning_rate ([0.01, 0.1]), and max_depth ([5, 

10, -1]) were tuned. A key LightGBM-specific parameter, num_leaves ([31, 50, 100]), was also tuned, 

as it is the primary way to control model complexity in its leaf-wise growth strategy. 

Bagging (BG) 

The Bagging classifier is a general ensemble meta-estimator that fits base classifiers each on 

random subsets of the original dataset. The final prediction is an aggregation (e.g., averaging or voting) 

of the individual predictions. Unlike Random Forest, which uses decision trees and random feature 

subsets, the standard BaggingClassifier in Scikit-learn can use any base estimator, though it is most 

commonly used with decision trees. It was implemented here to provide a pure bagging baseline for 

comparison with the more sophisticated Random Forest and boosting algorithms. 

Hyperparameter Tuning: 

The n_estimators ([10, 50, 100]) was tuned to find the optimal number of base estimators. The 

max_samples parameter ([0.5, 0.8, 1.0]), which controls the size of the random subsets of the training 

data to draw for each base estimator, was also tuned. 

C. Deep Learning Architectures 

Deep Learning models learn hierarchical representations of data through multiple layers of 

non-linear processing units. While often associated with image and text data, they can also be applied 

to structured tabular data. 

Multilayer Perceptron (MLP) 

An MLP is the quintessential feedforward artificial neural network. It consists of an input layer, 

one or more hidden layers of perceptrons (neurons with non-linear activation functions), and an output 

layer. It was implemented as a baseline deep learning model using the MLPClassifier from Scikit-

learn. Its purpose was to assess whether even a simple neural network could outperform the classical 

and ensemble models on this structured data. 

Hyperparameter Tuning: 

The architecture was tuned by testing different hidden_layer_sizes ([(100,), (50,50)]). The 

activation function (['relu', 'tanh']) and the L2 regularization term alpha ([0.0001, 0.001]) were also 

tuned to mitigate overfitting. The adam solver was used for efficient stochastic optimization. 

Deep Neural Network (DNN) 

A custom, deeper neural network was implemented using the TensorFlow/Keras framework to 

represent a more modern and powerful deep learning approach. This model featured more layers and 

neurons, along with advanced techniques like Dropout and Batch Normalization to improve training 

stability and generalization. This model was designed to see if increased depth and complexity could 

unlock superior performance on the CVD prediction task. 

Architecture & Hyperparameter Tuning: 
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The model was built with a sequential architecture. The search involved tuning the number of 

layers ([4, 6]) and the number of units per layer (e.g., [128, 64, 32]). Dropout layers with a tunable 

dropout_rate ([0.2, 0.5]) were added after dense layers to randomly disable neurons during training, 

further preventing overfitting. BatchNormalization layers were used to stabilize and accelerate the 

training process. The model was compiled with the Adam optimizer and used binary_crossentropy 

loss. The batch_size ([256, 512]) was also tuned to find the optimal update frequency for the gradients. 

 

IV. Evaluation Metrics 

To ensure a comprehensive and robust assessment of each model's performance, a suite of five 

standard evaluation metrics was employed. These metrics were calculated from the confusion matrix 

(TP, TN, FP, FN) generated by each model's predictions on the independent test set. This multi-metric 

approach is critical, as it provides a holistic view of model performance from different perspectives, 

mitigating the limitations inherent in relying on a single metric. 

A. Accuracy: 

The overall proportion of correct patient diagnoses. It measures the model's ability to correctly 

identify both patients with and without cardiovascular disease. 

 
B. Precision: 

The proportion of patients predicted to have CVD that actually have the disease. It measures 

the model's reliability in minimizing false alarms and unnecessary follow-up procedures. 

 
C. Recall: 

The proportion of patients with actual CVD that were correctly identified by the model. It 

measures the model's ability to minimize missed diagnoses, which is critical for early intervention. 

 
D. F1-score: 

The harmonic mean of Precision and Recall. It provides a single score that balances the critical 

trade-off between avoiding false alarms (Precision) and avoiding missed cases. 

 
E. ROC-AUC: 

The probability that the model will rank a random patient with CVD higher than a random 

patient without it. It evaluates the model's inherent ability to discriminate between the two classes 

across all possible diagnostic thresholds. 

 

Table 2: Confusion Matrices for all algorithms 

Logistic Regression 

 Predicted 

 

Actual Positive TP: 41% FN: 11% 

Actual Negative FP: 7% TN: 41% 
 

Naive Bayes 

 Predicted 

 

Actual Positive TP: 39% FN: 13% 

Actual Negative FP: 8% TN: 40% 
 

 

K-Nearest Neighbors 

 Predicted 

 

 

Support Vector Machine 

 Predicted 
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Actual Positive TP: 42% FN: 10% 

Actual Negative FP: 7% TN: 41% 
 

Actual Positive TP: 43% FN: 9% 

Actual Negative FP: 7% TN: 41% 
 

 

Decision Tree 

 Predicted 

 

Actual Positive TP: 40% FN: 10% 

Actual Negative FP: 12% TN: 38% 
 

 

Random Forest 

 Predicted 

 

Actual Positive TP: 44% FN: 6% 

Actual Negative FP: 6% TN: 44% 
 

 

Gradient Boosting 

 Predicted 

 

Actual Positive TP: 45% FN: 5% 

Actual Negative FP: 6% TN: 44% 
 

 

AdaBoost 

 Predicted 

 

Actual Positive TP: 

43% 

FN: 7% 

Actual Negative FP: 7% TN: 43% 
 

 

XGBoost 

 Predicted 

 

Actual Positive TP: 45% FN: 5% 

Actual Negative FP: 6% TN: 44% 
 

 

LightGBM 

 Predicted 

 

Actual Positive TP: 

45% 

FN: 5% 

Actual Negative FP: 6% TN: 44% 
 

 

Bagging 

 Predicted 

 

Actual Positive TP: 

44% 

FN: 6% 

Actual Negative FP: 7% TN: 43% 

 

DNN 

 Predicted 

 

Actual Positive TP: 

43% 

FN: 7% 

Actual Negative FP: 6% TN: 44% 
 

 

MLP 

 Predicted 

 

Actual Positive TP: 

43% 

FN: 7% 

Actual Negative FP: 7% TN: 43% 
 

 

Table 3: Performance Comparison of Algorithms 

Model Class Algorithm Accuracy Precision Recall 
F1-

Score 

AUC-

ROC 

Classical ML 
Logistic 

Regression 
0.821 0.832 0.798 0.815 0.891 

 Naïve Bayes 0.803 0.841 0.742 0.788 0.874 

 K-Nearest 

Neighbors 
0.835 0.848 0.808 0.828 0.903 



Journal of the Maharaja Sayajirao University of Baroda 
ISSN :0025-0422 

Volume-59, No.4 : 2025                                          114 

Model Class Algorithm Accuracy Precision Recall 
F1-

Score 

AUC-

ROC 

 Support Vector 

Machine 
0.843 0.852 0.822 0.837 0.912 

 Decision Tree 0.788 0.781 0.802 0.791 0.788 

Ensemble 

Methods 
Random Forest 0.878 0.876 0.877 0.876 0.945 

 Gradient 

Boosting 
0.887 0.889 0.883 0.886 0.952 

 AdaBoost 0.861 0.863 0.856 0.859 0.931 

 XGBoost 0.889 0.887 0.889 0.888 0.954 

 LightGBM 0.888 0.885 0.888 0.887 0.953 

 Bagging 0.872 0.871 0.870 0.870 0.940 

Deep 

Learning 
MLP 0.856 0.859 0.851 0.855 0.925 

 DNN 0.863 0.865 0.859 0.862   0.932 

 

V. Conclusion 

This study presented CARDIO-AI, a large-scale, exhaustive comparative analysis of 15 distinct 

artificial intelligence algorithms across classical machine learning, ensemble, and deep learning 

paradigms for the prediction of cardiovascular disease. The research was conducted on a substantial 

dataset of one million patient records, with rigorous hyperparameter tuning and a multi-faceted 

evaluation protocol to ensure robust and generalizable findings. The empirical results lead to several 

definitive conclusions. Firstly, while classical machine learning models such as Support Vector 

Machines and K-Nearest Neighbors provided strong and reliable baseline performance, they were 

consistently outperformed by more advanced ensemble and deep learning techniques. Secondly, tree-

based ensemble methods demonstrated unequivocal superiority on this structured tabular clinical data. 

Gradient Boosting, XGBoost, and LightGBM emerged as the top-performing algorithms, achieving 

the highest scores across accuracy, precision, recall, F1-score, and AUC-ROC (all exceeding 0.88). 

Their ability to model complex, non-linear interactions between risk factors and their robustness to 

outliers and irrelevant features makes them exceptionally well-suited for clinical prediction tasks. 

Thirdly, while deep learning architectures (MLP and DNN) performed competitively and 

surpassed classical models, they did not outperform the leading gradient-boosting ensembles. This, 

coupled with their significantly higher computational cost and complexity, suggests that for structured 

EHR data of this nature, sophisticated ensemble methods currently offer a more practical and effective 

solution. The feature selection analysis confirmed the strong predictive value of direct exercise-

induced physiological measures like Old Peak and Maximum Heart Rate, aligning with established 

clinical knowledge and validating the models' decision processes. In summary, the CARDIO-AI 
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framework successfully identifies XGBoost and LightGBM as the most efficacious algorithms for 

CVD prediction on large-scale tabular data. These models provide an optimal balance of predictive 

accuracy, computational efficiency, and robustness. The findings offer a strong, data-driven foundation 

for the development of AI-powered Clinical Decision Support Systems (CDSS). Future work will 

focus on the integration of these models into real-world clinical workflows, the development of real-

time explainability interfaces for clinicians, and prospective validation to assess their impact on early 

intervention and patient outcomes in the ongoing fight against cardiovascular disease. 
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